Skip to main content
Log in

Formation of Artificial Communities for the Ballast Water Management Systems Testing in Accordance with Requirements of International Maritime Organization

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

The International Maritime Organization (IMO) in the convention adopted in 2004 imposes stringent requirements on the quality of seawater used in the testing of ballast water management systems (BWMS). They concern both the abundance of plankton organisms of two size groups, 10–50 μm and more than 50 μm, and the taxonomic composition (at least five species of three taxonomic types). Marine phytoplankton has a wide variety of sizes and morphological forms of cells, which makes it difficult to apply the imperative size adopted by the IMO. It is proposed to formalize the size criterion by calculating an equivalent spherical diameter. The real test of the BWMS in 2017 set the task of assessing the compliance of natural water with these quality standards. According to the results of annual monitoring in the northeastern part of the Black Sea, it has been shown that the species diversity of phytoplankton in the size group of 10–50 μm always corresponds to the necessary requirements, but its abundance is two orders of magnitude lower than required. In this case, the simultaneous presence of representatives of three different systematic groups in the initial water is not always observed. This poses the task of modifying the hydrobiological parameters of ballast water by the addition of cultivated species and the formation of a new community with predetermined properties. In this work, we used an intense culture of green algae, which made it possible to increase the abundance of cells to the level corresponding to IMO requirements and also to add a representative of another taxonomic group. Taxonomic diversity in the size group above 50 μm is sufficient and is provided by species diversity of zooplankton; however, the contribution of these organisms to the total population is not large (no more than 3%). The necessary abundance of representatives of this size group was ensured by the cultivation of large dinoflagellates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AlgaeBase, National University of Ireland, Galway. http://www.algaebase.org. Accessed December 14, 2017.

  • Cullen, J.J. and MacIntyre, H.L., On the use of the serial dilution culture method to enumerate viable phytoplankton in natural communities of plankton subjected to ballast water treatment, J. Appl. Phycol., 2015, vol. 28, no. 1, pp. 279–298. doi 10.1007/s10811-015-0601-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake, L.A., Doblin, M.A., and Dobbs, F.C., Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm, Mar. Poll. Bull., 2007, vol. 55, pp. 333–341. http://dx.doi.org/10.1016/j.marpolbul.2006.11.007.

    Article  CAS  Google Scholar 

  • Drake, L.A., Tamburri, M.N., First, M.R., Smith, G.J., and Johengen, T.H., How many organisms are in ballast water discharge? A framework for validating and selecting compliance monitoring tools, Mar. Pollut. Bull., 2014, vol. 86, pp. 122–128.

    Article  PubMed  CAS  Google Scholar 

  • Drozdov, V.V., Transboundary pollution of marine ecosystems by ballast water from large-capacity vessels and technologies for its prevention, Ekol. Promyshl. Ross., 2014, no. 9, pp. 38–43.

    Google Scholar 

  • Harrison, P.J., Zingone, A., Mickelson, M.J., Lehtinen, S., Ramaiah, N., Kraberg, A., Sun, J., McQuatters-Gollop, A., and Jakobsen, H.H., Cell volumes of marine phytoplankton from globally distributed coastal data sets, Est. Coast. Shelf Sci., 2015, vol. 162, pp. 130–142. http://dx.doi.org/10.1016/j.ecss.2015.05.026.

    Article  CAS  Google Scholar 

  • Hasle, G.R., Are most of the domoic acid-producing species of the diatom genus Pseudo-nitzschia cosmopolites?, Harmful Algae, 2002, vol. 1, pp. 137–146.

    Article  Google Scholar 

  • Hillebrand, H., Durselen, C., Kirschtel, D., Pollingher, U., and Zohary, T., Biovolume calculation for pelagic and benthic microalgae, J. Phycol., 1999, vol. 35, pp. 403–424.

    Article  Google Scholar 

  • Identifying Marine Phytoplankton, Tomas, C.R., Ed., San Diego: Academic, 1997.

  • IMO, 2015: International Mathematical Olympiad. http://www.imo.org/en/OurWork/Environment/BallastWaterManagement/Pages/Default.aspx. Accessed December 14, 2017.

  • Kiselev, I.A., Plankton morei i kontinental’nykh vodoemov (Plankton of the Seas and Continental Reservoirs), Leningrad: Nauka, 1969, vol. 1.

  • Lebedeva, L.P., Lukasheva, T.A., Anokhina, L.L., and Chasovnikov, V.K., Interannual variability in the zooplankton community in Golubaya Bay (Northeastern part of the Black Sea) in 2002–2012, Oceanology, 2015, vol. 55, no. 3, pp. 355–363.

    Article  Google Scholar 

  • Maracýn, E., Cell size as a key determinant of phytoplankton metabolism and community structure, Annu. Rev. Mar. Sci., 2015, vol. 7, pp. 241–264.

    Article  Google Scholar 

  • Mikaelyan, A.S., Malej, A., Shiganova, T.A., Turk, V., Sivkovitch, A.E., Musaeva, E.I., Kogovšek, T., and Lukasheva, T.A., Populations of the red tide forming dinoflagellate Noctiluca scintillans (Macartney): a comparison between the Black Sea and the northern Adriatic Sea, Harmful Algae, 2014, vol. 33, pp. 29–40.

    Article  Google Scholar 

  • Morozova, T.V., Selina, M.S., Stonik, I.V., Shevchenko, O.G., and Zvyagintsev, A.Yu., Phytoplankton in ships’ ballast waters in the port of Vladivostok, Russ. J. Biol. Invasions, 2011, vol. 2, no. 1, pp. 29–34.

    Article  Google Scholar 

  • Olenina, I., Hajdu, S., Edle, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I., and Niemkiewicz, E., Biovolumes and size-classes of phytoplankton in the Baltic Sea, HELCOM Balt. Sea Environ. Proc., 2006, no. 106.

  • Pautova, L.A., Mikaelyan, A.S., and Silkin, V.A., Structure of plankton phytocoenoses in the shelf waters of the Northeastern Black Sea during the Emiliania huxleyi Bloom in 2002–2005, Oceanology, 2007, vol. 47, no. 3, pp. 377–385.

    Article  Google Scholar 

  • Peter, K.H. and Sommer, U., Phytoplankton cell size: intra- and interspecific effects of warming and grazing, PLoS One, 2012, vol. 7, no. 11, p. e49632. http://dx.doi.org/10.1371/journal.pone.0049632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poglazova, M.N. and Mitskevich, I.N., The use of fluorescamine to determine the amount of microorganisms in sea water by the epifluorescence method, Mikrobiologiya, 1984, no. 5, pp. 850–858.

    Google Scholar 

  • Ruiz, G.M., Carlton, J.T., Grosholz, E.D., and Hines, A.H., Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences, Am. Zool., 1997, vol. 37, pp. 621–632. http://dx.doi.org/10.1093/icb/37.6.621.

    Article  Google Scholar 

  • Rukovodstvo po primeneniyu trebovanii Mezhdunarodnoi konventsii o kontrole sudovykh ballastnykh vod i osadkov i upravleniyu imi 2004 goda. Rossiiskii morskoi registr sudokhodstva (Guidance on the Application of the Requirements of the International Convention on the Control and Management of Ships’ Ballast Water and Sediments, 2004. Russian Maritime Register of Shipping), St. Petersburg, 2017.

  • Shiganova, T.A., Alien species in the ecosystems of the southern inland seas of Eurasia, Extended Abstract of Doctoral (Biol.) Dissertation, 2009.

    Google Scholar 

  • Silkin, V.A. and Khailov, K.M., Bioekologicheskie mekhanizmy upravleniya v akvakul’ture (Bioecological Management Mechanisms in Aquaculture), Leningrad: Nauka, 1988.

    Google Scholar 

  • Silkin, V.A., Pautova, L.A., and Lifanchuk, A.V., Physiological regulatory mechanisms of the marine phytoplankton community structure, Russ. J. Plant Physiol., 2013, vol. 60, no. 4, pp. 541–548.

    Article  CAS  Google Scholar 

  • Silkin, V.A., Abakumov, A.I., Pautova, L.A., Mikaelyan, A.S., Chasovnikov, V.K., and Lukashova, T.A., Coexistence of nonnative and Black Sea species in phytoplankton of north-eastern part of the Black Sea: discussion of invasion hypotheses, Russ. J. Biol. Invasions, 2011, vol. 2, no. 4, pp. 256–264.

    Article  Google Scholar 

  • Thomaz, S.M., Kovalenko, K.E., Havel, J.E., and Kats, L.B., Aquatic invasive species: general trends in the literature and introduction to the special issue, Hydrobiologia, 2015, vol. 746, pp. 1–12. http://dx.doi.org/10.1007/s10750-014-2150-8.

    Article  Google Scholar 

  • Throndsen, J., Hasle, G.R., and Tangen, K., Norsk kystplanktonflora, Oslo: Almater Forlag AS, 2003.

    Google Scholar 

  • Vinogradov, M.E., Sapozhnikov, V.V., and Shushkina, E.A., Ekosistema Chernogo morya (Ecosystem of the Black Sea), Moscow: Nauka, 1992.

    Google Scholar 

  • World Register of Marine Species. http://www.marinespecies.org. Accessed December 14, 2017.

  • Zaiko, A., Zaiko, A., Martinez, J.L., Ardura, A., Clusa, L., Borrell, Y.J., Samuiloviene, A., Roca, A., and Garcia-Vazquez, E., Detecting nuisance species using NGST: methodology short comings and possible application in ballast water monitoring, Mar. Environ. Res., 2015, vol. 112, part B, pp. 64–72. http://dx.doi.org/10.1016/j.marenvres.2015.07.002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Silkin.

Additional information

Original Russian Text © V.A. Silkin, L.A. Pautova, A.V. Fedorov, E.I. Shitikov, V.V. Drozdov, T.A. Lukasheva, D.A. Zasko, 2018, published in Rossiiskii Zhurnal Biologicheskikh Invazii, 2018, No. 1, pp. 114–129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silkin, V.A., Pautova, L.A., Fedorov, A.V. et al. Formation of Artificial Communities for the Ballast Water Management Systems Testing in Accordance with Requirements of International Maritime Organization. Russ J Biol Invasions 9, 184–194 (2018). https://doi.org/10.1134/S2075111718020121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111718020121

Keywords

Navigation