UAV Navigation System Autonomous Correction Algorithm Based on Road and River Network Recognition

Abstract—The paper considers an original autonomous correction algorithm for UAV navigation system based on comparison between terrain images obtained by onboard machine vision system and vector topographic map images. Comparison is performed by calculating the homography of vision system images segmented using the convolutional neural network and the vector map images. The presented results of mathematical and flight experiments confirm the algorithm effectiveness for navigation applications.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Schmidt, G.T., GPS based navigation systems in difficult environments, Gyroscopy and Navigation, 2019, vol. 10, no. 2, pp. 41−53. https://doi.org/10.1134/S207510871902007X

    Article  Google Scholar 

  2. 2

    Emel’yantsev, G.I., Stepanov, A.P., and Blazhnov, B.A., Aircraft navigation using MEMS IMU and ground radio beacons, Gyroscopy and Navigation, 2017, vol. 8, no. 3, pp. 173−180. https://doi.org/10.1134/S207510871703004X

    Article  Google Scholar 

  3. 3

    Chigin, G.P., Use of a field of linear reference points in problems of extremal navigation, Journal of Computer and Systems Sciences International, 1998, vol. 37, no. 2, pp. 318–328.

    MATH  Google Scholar 

  4. 4

    Dzhandzhgava, G.I. and Avgustov, L.I., Navigatsiya po geopolyam (Navigation by Geophysical Fields), Moscow: Nauchtekhlitizdat, 2018.

  5. 5

    Peshekhonov, V.G., Stepanov, O.A. et al., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya zemli (Modern Technologies and Methods for Measuring the Earth’s Gravity Field Parameters), Peshekhonov, V.G. and Stepanov, V.A., Eds., St. Petersburg, 2017.

    Google Scholar 

  6. 6

    Doer, C., Scholz, G., and Trommer, G.F., Indoor laser-based SLAM for micro aerial vehicles, Gyroscopy and Navigation, 2017, vol. 8, no. 3, pp. 181−189. https://doi.org/10.1134/S2075108717030038

    Article  Google Scholar 

  7. 7

    Conte, G. and Doherty, P., Vision-based unmanned aerial vehicle navigation using geo-referenced information, EURASIP Journal on Advances in Signal Processing, 2009, 387308 (2009).

    Article  Google Scholar 

  8. 8

    Yol, A., Delabarre, B., Dame, A., Dartois, J.-E., and Marchand, E., Vision-based absolute localization for unmanned aerial vehicles, Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, 2014, pp. 3429–3434.

  9. 9

    Fan, B., Du, Y., Zhu, L., and Tang, Y., The registration of UAV down-looking aerial images to satellite images with image entropy and edges, Intelligent Robotics and Applications, 2010, pp. 609–617.

    Google Scholar 

  10. 10

    Sim, D.-G., Park, R.-H., Kim, R.-C., Lee, S.U., and Kim, I.-C., Integrated position estimation using aerial image sequences, IEEE Transactions On Pattern Analysis And Machine Intelligence, 2002, 24(1), pp. 1–18.

    Article  Google Scholar 

  11. 11

    Majdik, A.L., Verda, D., Albers-Schoenberg, Y., and Scaramuzza, D., Air-ground matching: Appearance-based GPS-denied urban localization of micro aerial vehicles, Journal of Field Robotics, 2015, 32(7), pp. 1015–1039.

    Article  Google Scholar 

  12. 12

    Majdik, A.L., Albers-Schoenberg, Y., and Scaramuzza, D., MAV urban localization from Google street view data, Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 2013, pp. 3979–3986.

  13. 13

    Ghouaiel, N. and Lefevre, S., Coupling ground-level panoramas and aerial imagery for change detection, Geo-Spatial Information Science, 2016, 19(3), pp. 222–232.

    Article  Google Scholar 

  14. 14

    Viswanathan, A., Pires, B.R., and Huber, D., Vision based robot localization by ground to satellite matching in GPS-denied situations, Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, 2014, pp. 192–198.

  15. 15

    Workman, S., Souvenir, R., and Jacobs, N., Wide-area image geolocalization with aerial reference imagery, Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3961–3969.

  16. 16

    Zhai, M., Bessinger, Z., Workman, S., and Jacobs, N., Predicting ground-level scene layout from aerial imagery, 2016, arXiv preprint arXiv:1612.02709.

  17. 17

    Lefevre, S., Tuia, D., Wegner, J.D., Produit, T., and Nassar, A.S., Toward seamless multiview scene analysis from satellite to street level, Proceedings of the IEEE, 2017.

  18. 18

    Saurer, O., Baatz, G., Koser, K., Pollefeys, M. et al., Image based geo-localization in the Alps, International Journal of Computer Vision, 2016, 116(3), pp. 213–225.

    MathSciNet  Article  Google Scholar 

  19. 19

    Tian, Y., Chen, C., and Shah, M., Cross-view image matching for geo-localization in urban environments, arXiv preprint arXiv:1703.07815, 2017.

  20. 20

    Lowe, D.G., Distinctive image features from scale invariant keypoints, International journal of computer vision, 2004, 60(2), pp. 91–110.

    Article  Google Scholar 

  21. 21

    Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L., Speeded-up robust features (SURF), Computer vision and image under-standing, 2008, 110(3), pp. 346–359.

    Article  Google Scholar 

  22. 22

    Shukla, P., Goel, S., Singh, P., and Lohani, B., Automatic geolocation of targets tracked by aerial imaging platforms using satellite imagery, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, 40(1), pp. 381−388.

    Article  Google Scholar 

  23. 23

    Muller, M., Urban, S., and Jutzi, B., Squeezeposenet: Image based pose regression with small convolutional neural networks for real time UAS navigation, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 4, pp. 49−57.

    Google Scholar 

  24. 24

    Buslaev, A., Seferbekov, S., Iglovikov, V., and Shvets, A., Fully convolutional network for automatic road extraction from satellite imagery, IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, pp. 207–210.

  25. 25

    Ronneberger, O., Fischer, P., Brox, T., U-Net: Convolutional networks for biomedical image segmentation, MICCAI 2015. Lecture Notes in Computer Science, vol. 9351, Springer, Cham.

    Google Scholar 

  26. 26

    Ciresan, D.C., Gambardella, L.M., Giusti, A., Schmidhuber, J., Deep neural networks segment neuronal membranes in electron microscopy images, NIPS, 2012, pp. 2852–2860.

    Google Scholar 

  27. 27

    Lowe, D.G., Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 2004, vol. 60, issue 2, pp. 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  28. 28

    Fischler, M.A., and Bolles, R.C., Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Comm. ACM, 1981, 24 (6), pp. 381–395. https://doi.org/10.1145/358669.358692

    MathSciNet  Article  Google Scholar 

  29. 29

    Data Grand Lyon, https://rdata-grandlyon.readthedocs.io/en/latest/index.html. Cited January 01, 2020.

  30. 30

    Product data sheet No. 143\17\ЭП for Aerial reconnaissance system with large long-flight UAVs Orion-E.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. N. Sadekov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanchenko, A.P., Fedulin, A.M., Bikmaev, R.R. et al. UAV Navigation System Autonomous Correction Algorithm Based on Road and River Network Recognition. Gyroscopy Navig. 11, 293–299 (2020). https://doi.org/10.1134/S2075108720040100

Download citation

Keywords:

  • unmanned aerial vehicle
  • ground map correction
  • neural network
  • image segmentation
  • vector and raster map comparison
  • machine vision system