Gyroscopy and Navigation

, Volume 7, Issue 3, pp 269–276 | Cite as

Development of the global geoid model based on the algorithm of one-dimensional spherical Fourier transform

  • E. M. Mazurova
  • V. F. Kanushin
  • I. G. Ganagina
  • D. N. Goldobin
  • V. V. Bochkareva
  • N. S. Kosarev
  • A. M. Kosareva
Article
  • 28 Downloads

Abstract

An algorithm for constructing a model of the global geoid with zero-order approximation accuracy is considered. The algorithm is based on the one-dimensional spherical fast Fourier transform (FFT). It is 2.5 orders faster than those using the conventional discrete transform, and four orders, as compared with those using the numerical integration method. The algorithm was tested on the new Earth gravitational model EGM2008 published by the U.S. National Geospatial-Intelligence Agency (NGA).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eremeev, V.F. and Yurkina, M.I., Teorya vysot v gravitatsionnom pole Zemli (Theory of Heights in the Earth’s Gravitational Field), Moskva: Nedra, 1971.Google Scholar
  2. 2.
    Stokes, G.G., On the variation of gravity at the surface of the Earth, Transactions of the Cambridge Philosophical Society, 1849, vol. 8, pp. 672–695.Google Scholar
  3. 3.
    Hotine, M., Mathematical Geodesy, ESSA Monograph 2, U.S. Department of Commerce, Washington, D.C., 1969.MATHGoogle Scholar
  4. 4.
    Mazurova, E.M., On geodesy boundary-value problem in plane approximation with the accuracy of zero approximation of Molodensky theory based on Fourier transform, Izv. Vuzov. Geodeziya i aerofotos”emka, 2005, no. 5, pp. 14–22.Google Scholar
  5. 5.
    Mazurova, E.M. and Bagrova, A.S., On calculation of height anomaly based on wavelet transform and fast Fourier transform in the plane approximation, Izv. Vuzov. Geodeziya i aerofotos”emka, 2008, no. 4, pp. 6–9.Google Scholar
  6. 6.
    Mazurova, E.M., Lapshin, A.Yu., and Men’shova, E.V., On the comparison of methods for calculating height anomaly, Izv. Vuzov. Geodeziya i aerofotos”emka, 2012, no. 4, pp. 40–44.Google Scholar
  7. 7.
    Pavlis N.K., Holmes, S.A., Kenyon, S.C. and Factor, J.K., The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys, Res., 2012, vol. 117, doi 10.1029/2011/BOO8916Google Scholar
  8. 8.
    Haagmans, R., de Min, E., van Gelderen, M., Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral, Manuscripta geodaetica, 1993, vol. 18, no. 5, pp. 227–241.Google Scholar
  9. 9.
    Strang van Hees, G., Stokes formula using fast Fourier techniques, Manuscripta geodaetica, 1990, vol. 15, no. 4, pp. 235–239.Google Scholar
  10. 10.
    Heiskanen. W.A., and Moritz. H., Physical Geodesy. W.H. Freeman and Company, San Francisco, USA, 1967.Google Scholar
  11. 11.
    Karpik, A.P., Kanushin, V.F., Ganagina, I.G., Goldobin, D.N., and Mazurova, E.M., Analyzing spectral characteristics of the global Earth gravity field models obtained from the CHAMP, GRACE and GOCE space missions, Gyroscopy and Navigation, 2015, vol. 6, no. 2, pp. 101–108.CrossRefGoogle Scholar
  12. 12.
    Kanushin, V.F., Ganagina, I.G., Goldobin, D.N., Mazurova, E.M., Kosareva, A.M., and Kosarev, N.S., Comparison of models obtained from the GOCE space mission with different data sets of independent terrestrial gravity data, Vestnik CGGA, 2014, no. 3 (27), pp. 21–35.Google Scholar
  13. 13.
    Koneshov, V.N., Nepoklonov, V.B., and Solov’ev, V.N., Comparison of global Earth’s gravity field models with the aerogravimetric data obtained during a transcontinental flight, Gyroscopy and Navigation, 2014, vol. 5, no. 4, pp. 231–238.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. M. Mazurova
    • 1
  • V. F. Kanushin
    • 1
  • I. G. Ganagina
    • 1
  • D. N. Goldobin
    • 1
  • V. V. Bochkareva
    • 1
  • N. S. Kosarev
    • 1
  • A. M. Kosareva
    • 1
  1. 1.Siberian State University of Geosystems and TechnologiesNovosibirskRussia

Personalised recommendations