Skip to main content
Log in

Vertical deflection determination in high latitudes using precision IMU and two-antenna GNSS system

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper studies the possibility of using a well-known inertial geodetic method for determining a gravity field anomaly parameter, namely, vertical deflection (VD), in high latitudes. The proposed problem solution includes designing a specialized integrated system comprising a precision IMU and two-antenna GNSS system with a long antenna baseline. The paper presents the algorithms used to solve the problem, accuracy estimates obtained using simulation modeling in MATLAB (Simulink) and the results of sea trials of the GPS compass designed by Elektropribor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimbirev, B.P., Teoriya figury Zemli (Theory of the Earth’s Figure), Moscow: Nedra, 1975.

    Google Scholar 

  2. Peshekhonov, V., Vasilyev, V., and Zinenko, V., Measuring vertical deflection in ocean combining GPS, INS and star trackers, Proc. High Precision Navigation, Stuttgart, Germany, 1995. pp. 180–185.

    Google Scholar 

  3. Nash, R.A. and Jordan, S.K., Statistical geodesy, TIIER, 1978, vol. 66, no. 5, pp. 5–26.

    Google Scholar 

  4. Anuchin, O.N., Karkashev, V.A., and Emel’yantsev, G.I., Effect of geodetic uncertainties on the errors of inertial systems, Sudostroenie za Rubezhom, 1982. no. 5(185).

    Google Scholar 

  5. Dmitriev, S.P., Inertsial’nye metody v inzhenernoi geodezii (Inertial Methods in Engineering Geodesy), St. Petersburg, CSRI Elektropribor, 1997.

    Google Scholar 

  6. Peshekhonov, V.G., Nesenyuk, L.P., Starosel’tsev, L.P., and Elinson, L.S., Sudovye sredstva izmereniya parametrov gravitatsionnogo polya Zemli: Obzor (Shipborne Aids Measuring the Parameters of the Earth Gravity Field: A Review), Leningrad: Rumb, 1989.

    Google Scholar 

  7. Salychev, O., Voronov, V., and Lukianov, V., Inertial navigation systems in geodetic application: L.I.G.S. experience, 6th International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 1999.

    Google Scholar 

  8. Nassar, S., Improving the inertial navigation system (INS) error model for INS and INS/DGPS applications, UCGE Reports Number 20183, 2003.

    Google Scholar 

  9. Li, X. and Jekeli, C., Ground-vehicle INS/GPS vector gravimetry, Geophysics, 2008. vol. 73, no. 2, pp. I1–I10.

    Article  Google Scholar 

  10. Schwarz, K.P, Geoid profiles from an integration of GPS satellite and inertial data, Bolletion di geodesial scienze affini, 1987, no. 2, pp. 117–131.

    Google Scholar 

  11. Schwarz, K.P., Li, Y.C., and Wei, M., The spectral window for airborne gravity and geoid determination, Proc. Kinematic Systems in Geodesy, Geomatics and Navigation, Bannf, Canada, 1994. pp. 445–456.

    Google Scholar 

  12. Mangold, U., Rate bias INS augmented by GPS: to what extent is vector gravimetry possible, Proc. High Precision Navigation, Stuttgart, Germany, 1995. pp. 169–179.

    Google Scholar 

  13. Krasnov, A.A., Sokolov, A.V., and Elinson, L.S., A new air-sea shelf gravimeter of the Chekan series, Gyroscopy and Navigation, 2014, vol. 5, no. 3, pp. 129–135.

    Article  Google Scholar 

  14. Krasnov, A.A., Sokolov, A.V., and Elinson, L.S., Operational experience with the Chekan-AM gravimeters, Gyroscopy and Navigation, 2014, vol. 5, no. 3, pp. 179–186.

    Google Scholar 

  15. Krasnov, A.A. and Sokolov, A.V., Studying the gravity field of hard-to-reach Earth areas using Chekan-AM mobile gravimeter, Trudy Instituta Prikladnoi Astronomii RAN, 2009, no. 20, pp. 353–357.

    Google Scholar 

  16. Anuchin, O.N. and Emeliantsev, G.I., Integrirovannye sistemy orientatsii i navigatsii dlya morskikh podvizhnukh ob’’ektov (Integrated Navigation and Orientation Systems for Marine Vehicles), St. Petersburg, CSRI Elektropribor, 2003.

    Google Scholar 

  17. http://www.novatel.co.

  18. Emel’yantsev, G.I., Blazhnov, B.A., and Stepanov, A.P., Using phase measurements for determining a vehicle’s attitude parameters by a GPS-aided inertial system, Gyroscopy and Navigation, 2011, vol. 2, no. 4, pp. 256–260.

    Article  Google Scholar 

  19. Blazhnov, B.A., Koshaev, D.A., and Petrov, Yu.P., Adjusting the data of a two-antenna GNSS system to the IMU-fixed coordinate frame, 21st St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2014. pp. 83–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Emel’yantsev.

Additional information

Published in Giroskopiya i Navigatsiya, 2015, No. 3, pp. 72–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emel’yantsev, G.I., Blazhnov, B.A. & Stepanov, A.P. Vertical deflection determination in high latitudes using precision IMU and two-antenna GNSS system. Gyroscopy Navig. 6, 305–309 (2015). https://doi.org/10.1134/S2075108715040057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108715040057

Keywords

Navigation