Gyroscopy and Navigation

, Volume 6, Issue 3, pp 224–229 | Cite as

Nonlinear effects in dynamics of cylindrical resonator of wave solid-state gyro with electrostatic control system



A new mathematical model of wave solid-state gyro is constructed, which describes interrelated electrical and mechanical oscillations in the case when the voltage is available at the electrodes. Wave pattern of resonator oscillations was studied using asymptotic Krylov-Bogoliubov method. Nonlinear electric processes in resonator control loop lead to additional gyro errors. A numerical example is provided.


Reference Voltage Ring Resonator Angular Rate Amplitude Frequency Characteristic Frequency Adjustment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peshekhonov, V.G., Gyros of the early 21st century, Giroskopiya i Navigatsiya, 2003, no. 4, pp. 5–18.Google Scholar
  2. 2.
    Matveev, V.A., Lunin, B.S., and Basarab, M.A., Navi-gatsionnye sistemy na volnovykh tverdotel’nykh giroskopakh (Navigation Systems of Wave Solid-State Gyros), Moscow: Fizmatlit, 2008.Google Scholar
  3. 3.
    Zhuravlev, V.F. and Klimov, D.M., Volnovoi tverdotel’nyi giroskop (Wave Solid-State Gyroscope), Moscow: Nauka, 1985.Google Scholar
  4. 4.
    Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., Studying stationary oscillation modes of the gyro resonator in the presence of positional and parametric excitations, Gyroscopy and Navigation, 2014, vol. 5, no. 4, pp. 224–228.CrossRefGoogle Scholar
  5. 5.
    Zhuravlev, V.F. and Lynch D.D., Electrical model of the wave solid-state gyroscope, Izv. RAN MTT, 1995, no. 5, pp. 12–24.Google Scholar
  6. 6.
    Sudipto, K. De. and Aluru, N.R., Complex nonlinear oscillations in electrostatically actuated microstruc-tures, J. Microelectromech. Syst., 2006, vol. 15, no. 2, pp. 355–369.CrossRefGoogle Scholar
  7. 7.
    Rhoads, J., Shaw, S., Tunner, K., Moehlis, J., DeMartini, B., Zhang, W., Generalized parametric reso-nance in electrostatically actuated microelectrome-chanical oscillators, J. Sound and Vib., 2006, vol. 296, pp. 797–829.CrossRefGoogle Scholar
  8. 8.
    Chavarett, F.R., Balthaza, I.M., Guilherm, I.R. and Nasciment, O.S., A reducing of chaotic behavior to a periodic orbit, of a combdriver drive system (MEMS) using particle swarm optimization, Proceedings of the 9th Brazilian Conference on Dynamics Control and their Applications, Serra Negra, 2010, pp. 378–383.Google Scholar
  9. 9.
    Merkuryev, I.V. and Podalkov, V.V., Dinamika mik-romekhanicheskogo i volnovogo tverdotel’nogo girosk-opov (Dynamics of the Micromechanical and Wave Solid-State Gyroscopes), Moscow: Fizmatlit, 2009.Google Scholar
  10. 10.
    Zhurvalev, V.F., Controlled Faucault pendulum as a model of a class of free gyros, Izv. RAN. MTT, 1997, no. 6, pp. 27–35.Google Scholar
  11. 11.
    Maslov, A.A., Maslov, D.A., Merkuryev, I.V., and Mikhailov, D.V., Drift of wave solid-state gyro in the presence of reference voltage on control electrodes, Vestnik MEI, 2013, no. 2, pp. 11–14.Google Scholar
  12. 12.
    RF Patent 2056038, Hemispherical resonator made of quartz glass within wave solid-state gyro, Lunin, B.S., Pavlov, I.V., 1996.Google Scholar
  13. 13.
    RF Patent 2544308, A method of characterization of wave solid-state gyro, Maslov, A.A., Merkuryev, I.V., and Maslov, D.A., 2015.Google Scholar
  14. 14.
    Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., Iden-tification of parameters of wave solid-state gyro with account for nonlinear resonator oscillations, Pribory i Sistemy. Upravlenie, Kontrol’, Diagnostika, 2014, no. 5, pp. 18–23.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. A. Maslov
    • 1
  • D. A. Maslov
    • 1
  • I. V. Merkuryev
    • 1
  1. 1.Moscow Power Engineering InstituteMoscowRussia

Personalised recommendations