Skip to main content
Log in

Construction of a geographically oriented horizon trihedron in gyroscopic orientation systems intended to aid navigation dead reckoning part 1. Gyroscopic orientation with a correctable pendulum. Implementation in a free gyroscope

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper considers the construction of a geographically oriented horizon trihedron intended to determine a carrier position by navigation dead reckoning. In most cases, gyroscopic orientation with a correctable pendulum (GOCP), the method proposed by the author, is more suited for this purpose than the inertial method. The gist of the new method is that the error in computed coordinates caused by the construction of the horizon plane with the use of accelerometer readings disturbed by the carrier inertial accelerations can be inertialessly corrected due to external velocity aiding. A scheme is proposed for the implementation of high-precision dead reckoning with three accelerometers and a gimballess electrostatic gyro, which is both an example of practical implementation and a prototype of a class of single-gyro orientation systems intended to aid navigation dead reckoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kofman, L.M. and Levental’, E.B., USSR Inventor’s Certificate, no. 184465, 1932, 120951/40-23.

  2. Broksmeier, Ch., Sistemy inertsial’noi navigatsii (Inertial Navigation Systems), Leningrad: Sudostroenie, 1967.

    Google Scholar 

  3. Chelpanov, I.B., Nesenyuk, L.P., and Braginskii, M.V. Raschet kharakteristik navigatsionnykh priborov (Calculating the Characteristics of Navigation Devices), Leningrad: Sudostroenie, 1978.

    Google Scholar 

  4. Anuchin, O.N. and Emel’yantsev, G.I., Integrirovannye sistemy orientatsii i navigatsii dlya morskikh podvizhnykh ob”ektov (Integrated Orientation and Navigation Systems for Marine Vehicles), St. Petersburg: Elektropribor, 2003.

    Google Scholar 

  5. Binder, Ya.I., Paderina, T.V., Lysenko, A.S., and Fedorovich, A.N., Continuous Gyro-Inclinometric Survey of Arbitrarily Oriented Wellbores: Various Schemes, Problems, and Solutions, Gyroscopy and Navigation, 2011, vol. 2, no.1, pp. 16–26.

    Article  Google Scholar 

  6. Binder, Ya.I., On the inappropriate use of the INS-generated heading in dead reckoning, Trudy VII Rossiiskoi nauch.-tekhnich. konf. Navigatsiya, gidrografiya i okeanografiya: prioritety razvitiya i innovatsii morskoi deyatel’nosti, St. Petersburg, 2011, pp. 162–168.

    Google Scholar 

  7. Lochekhin, A.V., Integrated system with an inertial module on an electrostatic gyro and micromechanical sensors, Cand. Sci. (Eng.) Dissertation, St. Petersburg, 2010.

    Google Scholar 

  8. Emel’yantsev, G.I., Osnovy navigatsii. Konspekt lektsii (Fundamentals of Navigation, Synopses of Lectures), St. Petersburg: Elektropribor, 2003.

    Google Scholar 

  9. Dyugurov, S.M., Landau, B.E., and Romanenko S.G., Models of random errors of the gimballess ESG data readout system, Giroskopiya i Navigatsiya, 2003, no. 2, pp. 18–23.

    Google Scholar 

  10. Kanaikin, V.A., Development of the theory and efficient methods, tools and technologies for in-tube inspection of the main gas pipelines to ensure their accident-free operation, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow, 2010.

    Google Scholar 

  11. Gusinskii, Z.V., Lesiyuchevskii, Yu.M., and Litmanovich, Yu.A., Alignment and calibration of an inertial navigation system with a multi-dimensional inertial sensor error model, Materialy IV Sankt-Peterburgskoi mezhdunarodnoi konferentsii po integrirovannym navigatsionnym sistemam, 1997, pp. 27–41.

    Google Scholar 

  12. Sliv, E.I., Prikladnaya teoriya inertsial’noi navigatsii (Applied Theory of Inertial Navigation), Leningrad: Sudostroenie, 1972.

    Google Scholar 

  13. Binder, Ya.I., Paderina T.V., and Litmanovich Y.A., Advanced borehole attitude determination without measuring axial angular rate component, Proc. PLANS-2006, San-Diego, California, USA, April 25–27, 2006.

    Google Scholar 

  14. Mishin, A. Yu., Kiryushin, E. Yu., Obukhov, A.I., and Gurlov, D.V., A compact integrated navigation system on micromechanical sensors, Elektronnyi zhurnal “Trudy MAI”, no. 70, 2012.

    Google Scholar 

  15. Litmanovich, Yu.A., An approach to using redundant information in the problems of determining angular orientation while monitoring two vectors, Giroskopiya i Navigatsiya, 2012, no. 3, pp. 99–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Binder.

Additional information

Published in Giroskopiya i Navigatsiya, 2014, No. 4, pp. 69–84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binder, Y.I. Construction of a geographically oriented horizon trihedron in gyroscopic orientation systems intended to aid navigation dead reckoning part 1. Gyroscopic orientation with a correctable pendulum. Implementation in a free gyroscope. Gyroscopy Navig. 6, 123–132 (2015). https://doi.org/10.1134/S2075108715020030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108715020030

Keywords

Navigation