Gyroscopy and Navigation

, Volume 6, Issue 1, pp 33–40 | Cite as

Sensitivity limits of coupled resonator optical waveguide (CROW) gyroscopes when subject to material losses

  • D. Kalantarov
  • C. Search


In recent years there has been a growing interest in optical microresonators as viable low cost on chip micro-optical gyroscopes with navigation grade sensitivities. Here, we analyze and compare the rotational sensitivity of coupled resonator optical waveguide (CROW) gyroscopes to equivalent single resonator gyroscopes under various geometric constraints and device parameters. We show that the CROW gyros offer a sensitivity enhancement over conventional single resonator gyros at low propagation losses. However, the single ring resonator gyro is found to be more stable over a wider range of propagation losses as well as boasting greater sensitivities for larger propagation losses compared to a CROW of the same size. Furthermore, an analysis of the maximum achievable sensitivity for different material technologies (Hydex, silicon oxynitride, and SOI) is conducted. While all materials achieved tactical grade sensitivities, Hydex shows the greatest potential for CROW gyros because of the stability of its sensitivity over a wide range of device parameters.


Propagation Loss Fiber Optic Gyro Scope Optical Gyroscope Silicon Oxynitride Resonator Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ciminelli, C., Dell’Olio, F., Campanella, C.E., and Armenise, M.N., Photonic technologies for angular velocity sensing, Adv. Opt. Photon., 2010, no. 2, pp. 370–404.Google Scholar
  2. 2.
    Passaro, V., de Tullio, C., Troia, B., Notte, M., Giannoccaro, M., and Leonardis, F., Recent Advances in Integrated Photonic Sensors, Sensors, 2012, no. 12, pp. 15558–15598.Google Scholar
  3. 3.
    Scheuer, J. and Yariv, A., Sagnac effect in coupled-resonator slow-light waveguide structures, Phys. Rev. Lett., 2006, vol. 96, p. 053901.CrossRefGoogle Scholar
  4. 4.
    Terrel, M.A., Digonnet, M.J.F., and Fan, S., Performance limitation of a coupled resonant optical waveguide gyroscope, J. Lightwave Technol., 2009, vol. 27, pp. 41–46.CrossRefGoogle Scholar
  5. 5.
    Terrel, M.A., Digonnet, M.J.F., and Fan, S., Performance comparison of slow-light coupled-resonator optical gyroscopes, Laser & Photon. Rev. 2009, vol. 3, pp. 452–465.CrossRefGoogle Scholar
  6. 6.
    Kalantarov, D. and Search, C.P., Effect of input-output coupling on the sensitivity of coupled resonator optical waveguide gyroscopes, J. Opt. Soc. Am. B, 2013, vol. 30, pp. 377–381.CrossRefGoogle Scholar
  7. 7.
    Kalantarov, D. and Search, C.P., Effect of resonator losses on the sensitivity of coupled resonator optical waveguide gyroscopes, Opt. Lett., 2014, vol. 39, no. 4, pp. 985–988.CrossRefGoogle Scholar
  8. 8.
    Toland, J.R.E., Kaston, Z.A., Sorrentino, C., and Search, C.P., Chirped area coupled resonator optical waveguide gyroscope, Opt. Lett., 2011, vol. 36, pp. 1221–1223.CrossRefGoogle Scholar
  9. 9.
    Sorrentino, C., Toland, J., and Search, C.P., Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide, Opt. Express, 2012, vol. 20, pp. 354–363.CrossRefGoogle Scholar
  10. 10.
    Steinberg, B. Z., Scheuer, J., and Boag, A., Rotation-induced superstructure in slow-light waveguides with mode degeneracy: optical gyroscopes with exponential sensitivity, J. Opt. Soc. Am. B, 2007, vol. 24, pp. 1216–1224.CrossRefGoogle Scholar
  11. 11.
    Novitski, R., Steinberg, B.Z., and Scheuer, J., Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor, Phys. Rev. A, 2012, vol. 85, p. 023813.CrossRefGoogle Scholar
  12. 12.
    Scully, M. and Suhail Zubairy, M., Quantum Optics, Cambridge: Cambridge University Press 1997.CrossRefGoogle Scholar
  13. 13.
    Ruffin, P.B., Fiber optics gyroscope sensors, in Fiber Optic Sensors, Yu, F.T.S., Yin, S., and Ruffin, P.B., Eds, CRC Press, 2008, 2nd edition.Google Scholar
  14. 14.
    Poon, J.K.S., Scheuer, J., Mookherjea, S., Paloczi, G.T., Huang, Y., and Yariv, A., Matrix analysis of microring coupled-resonator optical waveguides, Opt. Express, vol. 12, 2004, pp. 90–103.CrossRefGoogle Scholar
  15. 15.
    Capmany, J., Munoz, P., Domenech, J.D., and Muriel, M.A., Apodized coupled resonator waveguides, Opt. Express, 2007, vol. 15, pp. 10196–10206.CrossRefGoogle Scholar
  16. 16.
    Poon, J.K.S., Scheuer, J., Xu, Y., and Yariv, A., Designing coupled-resonator optical waveguide delay lines, J. Opt. Soc. Am. B, 2004, vol. 21, pp. 1665–1673.CrossRefGoogle Scholar
  17. 17.
    Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., and Laine, J.P., Microring resonator channel dropping filters, J. Lightwave Technology, 1997, vol. 15, pp. 998–1005.CrossRefGoogle Scholar
  18. 18.
    Hah, D. and Zhang, D., Analysis of resonant optical gyroscopes with two input/output waveguides, Opt. Express, 2010, vol. 18, pp. 18200–18205.CrossRefGoogle Scholar
  19. 19.
    Canciamilla, A., Torregiani, M., Ferrari, C., Morichetti, F., De La Rue, R.M., Samarelli, A., Sorel, M., and Melloni, A., Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits, J. Opt., 2010, vol. 12, 104008.CrossRefGoogle Scholar
  20. 20.
    Guillen-Torres, M.A., Cretu, E., Jaeger, N.A.F., and Chrostowski, L., Ring resonator optical gyroscopes-Parameter optimization and robustness analysis, Journal of Lightwave Technology, 2012, vol. 30, no. 12, pp. 1802–1817.CrossRefGoogle Scholar
  21. 21.
    Morichetti, F., Ferrari, C., Canciamilla, A., and Melloni, A., The first decade of coupled resonator optical waveguides: bringing slow light to applications, Laser & Photon. Rev., 2012, vol. 6, pp. 74–96.CrossRefGoogle Scholar
  22. 22.
    Morichetti, F., Melloni, A., Ferrari, C., and Martinelli, M., Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line, Opt. Express, 2008, vol. 16, no. 12, pp. 8395–8405.CrossRefGoogle Scholar
  23. 23.
    Xia, F., Sekaric, L., and Vlasov, Y., Ultracompact optical buffers on a silicon chip, Nature Photon., 2007, vol. 1, pp. 65–71.CrossRefGoogle Scholar
  24. 24.
    Gnan, M., Thorns, S., Macintyre, D.S., De La Rue, R.M., and Sorel, M., Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist, Electronics Letters, 2008, vol. 44, no. 2, pp. 115–116.CrossRefGoogle Scholar
  25. 25.
    Morichetti, F., Melloni, A., Breda, A., Canciamilla, A., Ferrari, C., and Martinelli, M., A reconfigurable architecture for continuously variable optical slow-wave delay lines, Opt. Express, 2007, vol. 15, pp. 17273–17282.CrossRefGoogle Scholar
  26. 26.
    Melloni, A., Costa, R., Monguzzi, P., and Martinelli, M., Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems, Opt. Lett., 2003, vol. 28, pp. 1567–1569.CrossRefGoogle Scholar
  27. 27.
    Duchesne, D., Ferrera, M., Razzari, L., Morandotti, R., Little, B.E., Chu, S.T., and Moss, D.J., Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides, Opt. Express, 2009, vol. 17, no. 3, pp. 1865–1870.CrossRefGoogle Scholar
  28. 28.
    Ferrera, M., Razzari, L., Duchesne, D., Morandotti, R., Yang, Z., Liscidini, M., Sipe, J.E., Chu, S., Little, B.E., and Moss, D.J., Low power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures, Nature Photonics, 2008, vol. 2, no. 12, p. 737.CrossRefGoogle Scholar
  29. 29.
    Little, B.E., Chu, S.T., Absil, P.P., Hryniewicz, J.V., Johnson, F.G., Seiferth, F., Gill, D., Van, V., King, O., and Trakalo, M., Very high order microring resonator filters for WDM applications, IEEE Photonics Technology Letters, 2004, vol. 16, no. 10, pp. 2263–2265.CrossRefGoogle Scholar
  30. 30.
    Cooper, M.L., Gupta, G., Schneider, M.A., Green, W.M.J., Assefa, S., Xia, F., Vlasov, Y.A., and Mookherjea, S., Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides, Opt. Express, 2010, vol. 18, pp. 26505–26516.CrossRefGoogle Scholar
  31. 31.
    Melloni, A., Canciamilla, A., Ferrari, C., Morichetti, F., Faolain, L.O., Krauss, T.F., De La Rue, R., Samarelli, A., and Sorel, M., Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison, Photonics Journal, IEEE, 2010, no. 2, pp. 181–194.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of Physics and Engineering PhysicsStevens Institute of TechnologyHobokenUSA

Personalised recommendations