Gyroscopy and Navigation

, Volume 3, Issue 3, pp 159–167 | Cite as

Improving the accuracy of angular rate determination for spinning vehicles

  • L. V. Vodicheva
  • E. L. Alievskaya
  • E. A. Koksharov
  • Yu. V. Parysheva


Different techniques used to improve the accuracy of measuring the angular rate of highly spinning vehicles about the rotation axis are considered. A method is proposed that requires no additional hardware expenses. The algorithms for implementing the proposed technique are analyzed, and the results of simulation are discussed.


Drift Rate Angular Rate Inertial Sensor Body Frame Amplitude Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vodicheva, L., Alievskaya, E., and Parysheva, Yu., Instrument Errors of a Strapdown Attitude Reference Unit for a Spinning Vehicle: an Estimation Technique and Some Results, 17 th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2010, pp. 125–127.Google Scholar
  2. 2.
    Beader, Mark E., Application of Roll-isolated Inertial Measurement Units to the Instrumentation of Spinning Vehicles, Sandia National Laboratories, December, 2000.
  3. 3.
    Handrich, E. and Hog, H., US Patent 6 539 799, Rotational Speed Measurement Device for Rotating Missiles, Apr. 1, 2003.Google Scholar
  4. 4.
    Goldstein, M.S., US Patent 4 262 861, Inertially Decoupled Strapdown System, Apr. 21, 1981.Google Scholar
  5. 5.
  6. 6.
    Kau, Sh. P., US Patent 5 067 084, Inertial Measurement Unit with Aiding from Roll Isolated Gyro, Nov. 19, 1991.Google Scholar
  7. 7.
    Zhbanov, Yu.K. et al., Correction of the Scale Factor of the Angular Rate Sensor of the SINS of a Spinning Vehicle, Materialy XVIII Sankt-Peterburgskoi mezhdunarodnoi konferentsii po integrirovannym navigatsionnym sistemam, St. Petersburg: Elektropribor, 2011, pp. 102–103.Google Scholar
  8. 8.
    Stepanov, O.A. and Koshaev, D.A., Studying Methods for Solving the Attitude Reference Problem using Satellite Systems, Integrirovannye inertsial’no-sputnikovye sistemy navigatsii, St. Petersburg: Elektropribor, 2001, pp. 197–221.Google Scholar
  9. 9.
    Doty, J.H. and McGraw G.A., US Patent 6 520 448, Spinning-vehicle Navigation Using Apparent Modulation of Navigation Signals, Feb. 18, 2003.Google Scholar
  10. 10.
    Vander Velde, W., Cafarella, J., Tseng, H-W., Dimos, G., and Upadhyay, T., US Patent 2010/0117894, GPS-based Measurement of Roll Rate and Roll Angle of Spinning Platforms, May 13, 2010.Google Scholar
  11. 11.
    Mickelson, W.A., US Patent 6 163 021, Navigation System for Spinning Projectiles, Dec. 19, 2000.Google Scholar
  12. 12.
    Minor, R.R. and Rowe, D.W., US Patent 6 208 936, Utilization of a Magnetic Sensor to Compensate a MEMSIMU/GPS and De-spin Strapdown on Rolling Missiles, Mar. 27, 2001.Google Scholar
  13. 13.
    Grosso, A.V., Fitzgerald R.J., and DeFonzo R.J., US Patent 4 676 456, Strap Down Roll Reference, Jun. 30, 1987.Google Scholar
  14. 14.
    Harris, J.C., US Patent 5 114 094, Navigation Method for Spinning Body and Projectile Using Same, May 19, 1992.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • L. V. Vodicheva
    • 1
  • E. L. Alievskaya
    • 1
  • E. A. Koksharov
    • 1
  • Yu. V. Parysheva
    • 1
  1. 1.Academician N.A. Semikhatov Scientific and Production Association of AutomaticsYekaterinburgRussia

Personalised recommendations