Gyroscopy and Navigation

, Volume 3, Issue 2, pp 91–99 | Cite as

Processing the results of SINS bench tests by methods of nonsmooth optimization in the presence of faults

  • P. A. Akimov
  • A. I. Matasov


A new approach to detecting jumps in biases of angular rate sensors in strapdown inertial navigation systems (SINS) is proposed. It is based on the method of least absolute deviations for dynamic systems, which provides for determining instants and magnitudes of jumps with a desired accuracy.


Estimation Problem Roll Angle Residual Vector Phase Vector Strapdown Inertial Naviga Tion System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akimov, P.A. and Matasov, A.I., Levels of Nonoptimality of the Weiszfeld Algorithm in the Least Absolute Deviation Method, Avtomatika i Telemekhanika, 2010, no. 2, pp. 4–16.Google Scholar
  2. 2.
    Akimov, P.A. and Matasov, A.I., Estimation of Zero Biases in Inertial Sensors of SINS’s by l 1-approximation, Avtomatika i Telemekhanika, 2011, no. 2, pp. 9–24.Google Scholar
  3. 3.
    Bolotin, Yu.V., Golikov, V.P., Larionov, S.V., and Trebukhov, A.V. Calibration Algorithms of a Platform Inertial Navigation System, Giroskopiya Navigatsiya, 2008, no. 3, pp. 13–26.Google Scholar
  4. 4.
    Golovan, A.A. and Parusnikov, N.A., Matematicheskie osnovy navigatsionnykh sistem (Mathematical Foundations of Navigation Systems), Part I. Matematicheskie modeli inertsial’noy navigatsii (Mathematical Models of Inertial Navigation), Moscow: MGU, 2010.Google Scholar
  5. 5.
    Dmitriev, S.P. and Stepanov, O.A., Multialternative Filtering in the Problems of Navigation Information Processing, Radiotekhnika, 2004, no. 7, pp. 23–28.Google Scholar
  6. 6.
    Koshaev, D.A. Multialternative Method for Detecting and Estimating Faults Based on Application of the Extended Kalman Filter, Avtomatika i Telemekhanika, 2010, no. 5, pp. 70–83.Google Scholar
  7. 7.
    Lawson, Ch. and Hanson, R., Solving least squares problems, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974.MATHGoogle Scholar
  8. 8.
    Mudrov, V.I. and Kushko, V.L., Metody obrabotki izmereniy: kvazipravdopodobnye otsenki (Methods of Measurement Processing: Quasi-likelihood Estimation), Moscow: Radio i Svyaz’, 1983.Google Scholar
  9. 9.
    Parusnikov, N.A., Morozov, V.M., and Borzov, V.I., Zadacha korrektsii v inertsial’noy navigatsii (Correction Problems of Inertial Navigation), Moscow: MGU, 1982.Google Scholar
  10. 10.
    Bloomfield, P., and Steiger, W.L., Least Absolute Deviations: Theory, Applications, and Algorithms, Boston-Basel-Stuttgart: Birkhauser, 1983.Google Scholar
  11. 11.
    Boyd, S., Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.Google Scholar
  12. 12.
    Kailath, T., Sayed, A.H., and Hassibi, B., Linear Estimation, New Jersey, Prentice Hall, 2000.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • P. A. Akimov
    • 1
  • A. I. Matasov
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations