Gyroscopy and Navigation

, 2:214 | Cite as

State of the art and prospects for the development of SAW-based solid-state gyros

  • D. P. Lukyanov
  • Yu. V. Filatov
  • S. Yu. Shevchenko
  • M. M. Shevelko
  • A. N. Peregudov
  • A. S. Kukaev
  • D. V. Safronov
Article

Abstract

Modern MEMS gyros are widely used nowadays, however, the field of high-dynamic moving objects is still hardly accessible for them because of rigid requirements for the sensors to be shock-resistant. Solid-state gyros (SSG), namely, those that are based on surface acoustic waves (SAW), are likely to become the solution to this problem. This paper provides a short introduction to theory of SAW-based SSGs and a brief overview of the existing design concepts, which are described, analyzed, and compared with each other. The main advantages, problems, and prospects for further development of SAW-based SSGs are discussed.

Keywords

Rayleigh Wave Surface Acoustic Wave Delay Line Coriolis Force Angular Rate 

References

  1. 1.
    Lao, B.Y., Gyroscopic Effect in Surface Acoustic Waves, Proc. IEEE Ultrasonics Symp., 1980, pp. 687–691.Google Scholar
  2. 2.
    Varadan, V.K., Varadan, V.V., Suh W.D. et al., Design and Development of a MEMS-IDT Gyroscope, Smart Mater. Struct., 2000, no. 9, pp. 898–905.Google Scholar
  3. 3.
    Varadan, V.K., Xavier, P., Varadan, V.V., and Suh, W.D., Conformal MEMS-IDT Gyroscopes and their Comparison with Fiber Optic Gyro, Proc. SPIE, 2000, vol. 8990, pp. 335–344.CrossRefGoogle Scholar
  4. 4.
    Varadan, V.K., Suh, W.D., Jose, K.A., and Varadan, V.V., Hybrid MEMS-IDT-Based Accelerometer and Gyroscope in a Single Chip, Proc. SPIE, 2001, 4334, 119.Google Scholar
  5. 5.
    Suh, W.D., Jose, K.A., Xavier, P.B., Varadan, V.K., and Varadan, V.V., Design, Simulation, and Testing of IDT-Based MEMS Gyroscope, Proc. SPIE, 2001, 4334, 95.Google Scholar
  6. 6.
    Jose, K.A., Suh, W.D., Xavier, P.B., Varadan, V.K., and Varadan, V.V., Surface Acoustic Wave MEMS Gyroscope, Wave Motion, 2002, vol.36,iss.4, pp. 367–381.MATHCrossRefGoogle Scholar
  7. 7.
    Mehta, A., Jose, K.A., and Varadan, V.K., Numerical Simulation of a Surface Acoustic Wave (SAW) Gyroscope Using HP EEsof, Proc. SPIE, 2002, 4700, 169.Google Scholar
  8. 8.
    Kurosawa, M., Fukuda, Y., Takasaki, M., and Highuchi T., A Surface Acoustic Wave Gyro, Transducers, 1997, pp. 863–866.Google Scholar
  9. 9.
    Kurosawa, M. A Surface Acoustic-Wave Gyro Sensor, Sensors and Actuators, 1998, pp. 33–39.Google Scholar
  10. 10.
    Woods, R.C., Kalami, H., and Johnson, B., Evaluation of a Novel Surface Acoustic Wave Gyroscope, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, vol. 49, no.1.Google Scholar
  11. 11.
    Lee, S. W., Rhim, J. W., Park, S. W., and Yang, S. S., A Novel Micro Rate Sensor using a Surface-Acoustic-Wave (SAW) Delay-line Oscillator, Sensors, IEEE, 2007, pp. 1156–1159.Google Scholar
  12. 12.
    Lee, S. W., Rhim, J. W., Park, S.W., and Yang, S.S., A Micro Rate Gyroscope based on the SAW Gyroscopic Effect, J. Micromech. Microeng., 2007, no. 17, pp. 2272–2279.Google Scholar
  13. 13.
    Wang, W., Oh, H., Lee, K., Yoon, S., and Yang, S. Enhanced Sensitivity of Novel Surface Acoustic Wave Microelectromechanical System-Interdigital Transducer Gyroscope, JJAP, 2009, no. 48.Google Scholar
  14. 14.
    Wang, W., He, S., and Li, H., Theoretical Sensitivity Evaluation of a Shear-Horizontal SAW based Micro Rate Sensor, Ultrasonics Symp. (IUS), 2009, pp. 1684–1687.Google Scholar
  15. 15.
    W. Wang, F. Xu, S. He, S. Li, and Lee, K., A New Micro-Rate Sensor Based on Shear Horizontal Surface Acoustic Wave Gyroscopic Effect, JJAP, 2010, no. 49.Google Scholar
  16. 16.
    Oh, H., W. Wang, S. Yang, and Lee, K., Development of SAW Based Gyroscope with High Shock and Thermal Stability, Sensors and Actuators A, 2011, no. 165, pp.8–15.Google Scholar
  17. 17.
    Sarapuloff, S.A., Skripkovskii, G. A., Rhim, J. W., Inertial Effects in Surface and Bulk Elastic Waves and Possibility of their Use in High-G Solid-State Micro Gyros, Proc.12th S.-Peterb. Int. Conf. on Integr. Nav. Syst., 2005, pp. 355–361.Google Scholar
  18. 18.
    Collet, B., Gyroscopic Effect in Surface Acoustic Waves in Anisotropic Solid Media, WCU (Paris), 2003. pp. 991–994.Google Scholar
  19. 19.
    Farwell, G. W., Topics in Applied Physics, Ed. Oliver, A. A., Springer-Verlag, N.Y., 1978, vol. 24, pp. 13–60.Google Scholar
  20. 20.
    Lukyanov, D.P., Tikhonov, A.A., Filatov, Yu.V. et al., Development and Optimization of the SAW-Microaccelerometer Design, (Part 2), Giroskopiya Navigatsiya, 2008, no. 3, pp. 62–76.Google Scholar
  21. 21.
    Lukyanov, D.P., Filatov, Yu.V., and Shevchenko, S.Yu. et al., The development and Investigation of the SAW-microaccelerometer, Proc. 11th S.-Peterb. Int. Conf. on Integr. Nav. Syst., 2004, pp. 300–306.Google Scholar
  22. 22.
    Kalinin, V., Lavrov, Yu., Lukianov, V., Mel’nikov, V., and Shubarev, V., Mathematical Simulation of a Surface Acoustic Wave (SAW), Elektronika: Nauka, Tekhnologiya, Biznes, 2008, Spetsvypusk, pp. 47–51.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • D. P. Lukyanov
    • 1
  • Yu. V. Filatov
    • 1
  • S. Yu. Shevchenko
    • 1
  • M. M. Shevelko
    • 1
  • A. N. Peregudov
    • 1
  • A. S. Kukaev
    • 1
  • D. V. Safronov
    • 1
  1. 1.St. Petersburg State Electrotechnical UniversitySt. PetersburgRussia

Personalised recommendations