Differential methods of identifying gyro noise structure

  • N. I. Krobka
Article

Abstract

The paper considers the differences in accuracy criteria for gyros in two applications: measuring rotation about a fixed axis and measuring rotation about a point. We describe the class of gyro noise with zero spectral density at zero frequency. This noise does not cause errors in angles of rotation (i.e., integrals of angular velocity projections on the gyro sensitivity axis) to accumulate with time, but lead to accumulation of errors in attitude determined by strapdown inertial systems. Ways of identifying gyro noise structure using the known lower order variances are analyzed: two-sample variance (Allan variance), three-sample variance (Hadamar variance), and proposed higher order variances [1].

Keywords

Power Spectral Density Inertial Measurement Unit Allan Variance Noise Structure Noise Power Spectral Density 

References

  1. 1.
    Krobka, N.I., Differential Methods for Identification of the Structure of Noise of Fiber-Optical and Other Gyros, 17th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2010, pp. 63–66.Google Scholar
  2. 2.
    IEEE Std 647-1981. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros; IEEE Std 647-1995. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros; IEEE Std 647-2006. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros.Google Scholar
  3. 3.
    IEEE Std 952-1997. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros; IEEE Std 952-1997 (R2008). IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros.Google Scholar
  4. 4.
    IEEE Std 292-1969 (R2010). IEEE Specification Format for Single-Degree-of-Freedom Spring-Restrained Rate Gyros.Google Scholar
  5. 5.
    IEEE Std 293-1969 (R2010). IEEE Test Procedure for Single-Degree-of-Freedom Spring-Restrained Gyros.Google Scholar
  6. 6.
    IEEE Std 517-1974 (R2010). IEEE Standard Specification Format Guide and Test Procedure for Single-Degree-of-Freedom Rate-Integrating Gyros.Google Scholar
  7. 7.
    IEEE Std 528-2001 (R2007). IEEE Standard for Inertial Sensor Terminology (Japanese translation published by the Japan Standards Association).Google Scholar
  8. 8.
    IEEE Std 529-1980 (R2010) IEEE Supplement for Strapdown Applications to IEEE Standard Specification Format Guide and Test Procedure for Single-Degree-of-Freedom Rate-Integrating Gyros.Google Scholar
  9. 9.
    IEEE Std 813-1988 (R2005) IEEE Specification Format Guide and Test Procedure for Two-Degree-of-Freedom Dynamically Tuned Gyros.Google Scholar
  10. 10.
    IEEE Std 1431-2004 (R2009) Specification Format Guide and Test Procedure for Coriolis Vibratory Gyros.Google Scholar
  11. 11.
    IEEE Std 1554-2005. IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis.Google Scholar
  12. 12.
    IEEE Std P1559-2009. IEEE Standard for Inertial Systems Terminology.Google Scholar
  13. 13.
    IEEE Std P1780. IEEE Standard Specification Format Guide and Test Procedure for Inertial Measurement Units (IMU) [being developed by IEEE/AESS Gyro and Accelerometer Panel].Google Scholar
  14. 14.
    Krobka, N.I., The Features of the Strapdown Inertial Orientation Systems Based on Three-Axis Fiber-Optic Gyros with One Common Light Source, 15th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2008, pp. 89–91.Google Scholar
  15. 15.
    Krobka, N.I., A New Noncommutative Kinematic Effect and Its Manifestations in Strapdown Inertial Orientation Systems Based on Fiber Optic Gyros, Gyroscopy Navigation, 2010, vol. 1, no. 1, pp. 26–36.CrossRefGoogle Scholar
  16. 16.
    Krobka, N.I., Non-Commutative Kinematic Effects and Laws of Fiber-Optic Gyro Noise Accumulation in Strapdown Inertial Orientation Systems, 16th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2009, pp. 69–72.Google Scholar
  17. 17.
    Allan, D.W., Statistics of Atomic Frequency Standards, Proc. IEEE, 1966, vol. 54, no. 2, pp. 221–230.CrossRefGoogle Scholar
  18. 18.
    Riley, W.J., The Basics of Frequency Stability Analysis, http://www.wriley.com/
  19. 19.
    Krobka, N.I., Accurate Error Equations of the Strapdown Inertial Navigation Systems, The Second Soviet-Chinese Symp. on Inertial Technology, Peshekhonov, V.G., Ed., St. Petersburg: Elektropribor, 1992, pp. 43–50.Google Scholar
  20. 20.
    Krobka, N.I., The Concept of Accurate Equations of Errors and Estimations of Quantum Limits of Accuracy of Strapdown Inertial Navigation Systems Based on Laser Gyros, Fiber-Optical Gyros, and Atom Interferometers on de Broglie Waves, 17th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2010, pp. 95–112.Google Scholar
  21. 21.
    Sveshnikov, A.A., Prikladnye metody teorii sluchainykh funktsii (Applied Methods of Theory of Random Functions), Moscow: Nauka, 1968.Google Scholar
  22. 22.
    Krobka, N.I. and Sviridov, M.V., On the Influence of Random Perturbations of Angular Velocity on the Solution of Kinematic Problem, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1984, no. 1, pp. 145–150.Google Scholar
  23. 23.
    Krobka, N.I., Application Features of Three-Axis Laser Gyros in Strapdown Inertial Navigation Systems, IV Russian-Chinese Symp. on Inertial Technology, St. Petersburg, 1993, pp. 54–63.Google Scholar
  24. 24.
    Krobka, N.I. and Sapozhnikov, I.N., Works on Laser Gyroscopy in Applied Mechanics Scientific Research Institute Named after Academician V. I. Kuznetsov, The First International Conf. on Inertial Technology, St.-Petersburg: Elektropribor, 1994, pp. 3–12.Google Scholar
  25. 25.
  26. 26.
    Scientific Technical Report Ekperimental’nye issledovaniya shumov VOG filiala TSENKI NII PM imeni akademika V.I. Kuznetsova (Experimental Studies of FOG Noise at Federal State Unitary Enterprise Center for Ground-Based Space Infrastructure, Kuznetsov Scientific Research Institute of Applied Mechanics), Principal Investigator N.I. Krobka, Federal State Unitary Enterprise Center for Ground-Based Space Infrastructure, Kuznetsov Scientific Research Institute of Applied Mechanics, кинд Э001.2402., 2008.Google Scholar
  27. 27.
    Krobka, N.I., Studying FOG Noise Structure by Allan Variance Method, in Scientific Yechnical Report Razrabotka tekhnicheskikh predlozhenii po sozdaniyu besplatformennogo inertsial’nogo bloka (BIB) na volokonno-opticheskikh giroskopakh (VOG) i mayatnikovykh akselerometrakh (MA) dlia sistem upravleniya KA i spuskaemogo apparata (Development of Technical Proposals on Strapdown Inertial Unit (SIU) on Fiber-Optic Gyros (FOG) and Pendulous Accelerometers (PA) for Spacecraft and Reentry Vehicles) on the 2nd Phase of Development Project TSENKI-N, Federal State Unitary Enterprise Center for Ground-Based Space Infrastructure, Kuznetsov Scientific Research Institute of Applied Mechanics, кинд. Э032-3476, 2008, pp. 71–147.Google Scholar
  28. 28.
    Krobka, N.I., Analysis of Noise Structure of FOG Output Using Test Results and Noise Influence on Space-craft Determination Accuracy, Scientific Technical Report on the 4th Phase of Development Project TSENKI-N, Federal State Unitary Enterprise Center for Ground-Based Space Infrastructure, Kuznetsov Scientific Research Institute of Applied Mechanics, кинд. Э001.2422, 2008, pp. 62–101.Google Scholar
  29. 29.
    Kurbatov, A.M., Method of Processing the Signals of a Ring Interferometer in Fiber-Optic Gyro (Options), RF Patent no. 2130587, Class G01B9/02, G01C19/72, 1999.Google Scholar
  30. 30.
    Kurbatov, A.M., Method of Compensating the Sagnac Phase Difference in a Ring Interferometer in Fiber-Optic Gyro, RF Patent no. 2146807, Class G01J9/02, 2000.Google Scholar
  31. 31.
    Kurbatov, A.M., Method of Stabilizing the Scale Factor of Fiber-Optic Gyro, RF Patent no. 2160885, Class G01C19/72, G01B9/02, 2000.Google Scholar
  32. 32.
    Kurbatov, A.M., Method of Fiber-Optic Gyro Data Processing, RF Patent no. 2160886, Class G01C19/72, G01B9/02, 2000.Google Scholar
  33. 33.
    Andreev, A.G., Ermakov, V.S., Kurbatov, A.M., and Kryukov, I.I., Method of Processing the Signals of a Ring Interferometer in Open-Loop Fiber-Optic Gyro, RF Patent no. 2176775, Class G01B9/02, G01C19/72, 2001.Google Scholar
  34. 34.
    Andreev, A.G., Ermakov, V.S., Kurbatov, A.M., and Kryukov, I.I., Method of Phase Modulation of Ring Interferometer Beams in Fiber-Optic Gyro, RF Patent No. 2194245, Class G01B9/02, G01C19/72, 2002.Google Scholar
  35. 35.
    Andreev, A.G., Ermakov, V.S., Kurbatov, A.M., and Kel’, O.L., Method of Processing the Signals of a Ring Interferometer in Fiber-Optic Gyro, RF Patent no. 2194246, Class G01B9/02, G01C19/72, 2002.Google Scholar
  36. 36.
    Andreev, A.G., Ermakov, V.S., and Kurbatov, A.M., Method of Phase Modulation in Ring Interferometer in Fiber-Optic Gyro, RF Patent no. 2194247, Class G01B9/02, G01C19/72, 2002.Google Scholar
  37. 37.
    Siraya, T.N., Allan Variance as a Measurement Error Estimate, Giroskop. Nav., 2010, no. 2, pp. 29–36.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. I. Krobka
    • 1
  1. 1.Federal State Unitary Enterprise Center for Ground-Based Space InfrastructureKuznetsov Scientific Research Institute of Applied MechanicsMoscowRussia

Personalised recommendations