Locust Bean Gum as Corrosion Inhibitors in NaCl Solution

Abstract

In this research, the inhibitive performance of locust bean gum (LBG) on the corrosion behavior of AISI 304 stainless steel (AISI 304SS), E150 Al alloy and copper in 0.15 M NaCl containing various amounts (10–3, 10–2, 10–1, 1, 1.5 and 2 g L–1) of LBG were researched using potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X‑ray analysis (EDS) and inductively coupled plasma optical emmision spectrometry (ICP-OES) methods. Polarisation curves indicated that LBG was acting as mixed type inhibitor. All electrochemical measurements showed that inhibition efficiencies increased with increasing LBG concentration. It was determined that the increase of inhibitor efficiency by concentration resulted from the adsorption of LBG to metal surface, and the adsorption fitted to the Langmuir adsorption isotherm equation. The variation in inhibitive efficiency mainly depends on sugar units present in the LBG molecule. The best inhibition shows in 0.15 M NaCl + 2 g L–1 LBG solution. LBG reduced corrosion by slowing the rate of reactions formation without changing anodic and cathodic reactions. In addition, LBG adsorptioned on active sites caused the reduction of corrosion due to geometric block effect. SEM results show that metal surfaces are highly damaged in an inhibitor-free environment. The SEM images with inhibitor environment show that the surface is more homogeneous and smooth. The results of EDS show that the presence of oxygen in the inhibitor medium results in the formation of surface metal oxides, and therefore the reduction of corrosion.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Fattah-alhosseini, A. and Noori, M., Measurement, 2016, vol. 94, p. 787.

    Article  Google Scholar 

  2. 2

    Alibakhshi, E., Ramezanzadeh, M., Haddadi, S.A., Bahlakeh, G., Ramezanzadeh, B., and Mahdavian, M., J. Cleaner Prod., 2019, vol. 210, p. 660e672.

  3. 3

    Anbarasia, C.M. and Divya, G., Mater. Today: Proc., 2017, vol. 4, p. 5190.

    Google Scholar 

  4. 4

    Behpour, M., Ghoreishia, S.M., Khayatkashania, M., and Soltani, N., Mater. Chem. Phys., 2012, vol. 131, p. 621.

    CAS  Article  Google Scholar 

  5. 5

    Chellouli, M., Chebabe, D., Dermaj, A., Erramli, H., Bettach, N., Hajjaji, N., Casaletto, M.P., Cirrincione, C., Privitera, A., and Srhiri, A., Electrochim. Acta, 2016, vol. 204, pp. 50–59.

    CAS  Article  Google Scholar 

  6. 6

    Du, Y.T., Wang, H.L., Chen, Y.R., Qi, H.P., and Jiang, W.F., J. Environ. Chem. Eng., 2017, vol. 5, p. 5891.

    CAS  Article  Google Scholar 

  7. 7

    Haldhar, R., Prasad, D., and Saxena, A., J. Environ. Chem. Eng., 2018, vol. 6, p. 2290.

    CAS  Article  Google Scholar 

  8. 8

    Aydinli, M. and Tutas, M., Lebensm.-Wiss. Technol. (1968-2004), 2000, vol. 33, pp. 63–67.

  9. 9

    Casaletto, M.P, Figà, V., Privitera, A., Bruno, M., Napolitano, A., and Piacente, S., Corros. Sci., 2018, vol. 136, p. 91.

    CAS  Article  Google Scholar 

  10. 10

    Ituen, E., Akaranta, O., James, A., and Sun, S., Sustainable Mater. Technol., 2017, vol. 11, p. 12.

    CAS  Google Scholar 

  11. 11

    Soltani, N., Tavakkoli, N., Khayatkashani, M., Jalali, M.R., and Mosavizade, A., Corros. Sci., 2012, vol. 62, p. 122.

    CAS  Article  Google Scholar 

  12. 12

    Alvarez, P.E., Fiori-Bimbi, M.V., Neske, A., Brandán, S.A., and Gervasi, C.A., J. Ind. Eng. Chem., 2018, vol. 58, p. 92.

    CAS  Article  Google Scholar 

  13. 13

    Azzaoui, K., Mejdoubi, E., Jodeh, S., Lamhamdi, A., Rodriguez-Castellón, E., Algarra, M., Zarrouk, A., Errich, A., Salghi, R., and Lgaz, H., Corros. Sci., 2017, vol. 129, p. 70.

    CAS  Article  Google Scholar 

  14. 14

    Jmiai, A., El Ibrahimi, B., Tara, A., Chadili, M., El Issami, S., Jbara, O., Khallaayoun, A., and Bazzi, L., J. Mol. Liq., 2018, vol. 268, p. 102.

    CAS  Article  Google Scholar 

  15. 15

    Sanaei, Z., Ramezanzadeh, M., Bahlakeh, G., and Ramezanzadeh, B., J. Ind. Eng. Chem., 2018. https://doi.org/10.1016/j.jiec.2018.09.013

  16. 16

    Verma, C., Ebenso, E.E., and Quraishi, M.A., J. Mol. Liq., 2017, vol. 248, p. 927.

    CAS  Article  Google Scholar 

  17. 17

    Abdel-Gaber, A.M., Khamis, E., Abo-ElDahab, H., and Adeel, Sh., Mater. Chem. Phys., 2008, vol. 109, p. 297.

    CAS  Article  Google Scholar 

  18. 18

    Zhang, K., Yang, W., Xu, B., Chen, Y., Yin, X., Liu, Y., and Zuo, H., J. Colloid Interface Sci., 2018, vol. 517, p. 52.

    CAS  Article  Google Scholar 

  19. 19

    Jokar, M., Farahani, T.S., and Ramezanzadeh, B., J. Taiwan Inst. Chem. Eng., 2016, vol. 63, p. 436.

    CAS  Article  Google Scholar 

  20. 20

    Gerengi, H., Schaefer, K., and Şahin, H.I., J. Ind. Eng. Chem., 2012, vol. 18, p. 2204.

    CAS  Article  Google Scholar 

  21. 21

    Raghavendra, N. and Bhat, J.I., J. King Saud Univ., Eng. Sci., 2017. https://doi.org/10.1016/j.jksues.2017.06.003

  22. 22

    Saxena, A., Prasad, D., Haldhar, R., Singh, G., and Kumar, A.B., J. Mol. Liq., 2018, vol. 258, p. 89.

    CAS  Article  Google Scholar 

  23. 23

    Khadom, A.A., Abd, A.N., and Ahmed, N.A., S. Afr. J. Chem. Eng., 2018, vol. 25, pp. 13–21.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Büyüksağiş.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Büyüksağiş, A., Baydır, A.T. & Dilek, M. Locust Bean Gum as Corrosion Inhibitors in NaCl Solution. Prot Met Phys Chem Surf (2021). https://doi.org/10.1134/S2070205120060076

Download citation

Keywords:

  • corrosion
  • locust bean gum
  • alloy
  • adsorption
  • inhibitor