Study of Power Effect on Structural, Mechanical Properties and Corrosion Behavior of CrN thin Films Deposited by Magnetron Sputtering

Abstract

Deposition of chromium nitride (CrN) thin films on Si(100) and low carbon steel (LCS) substrates has been performed using DC magnetron sputtering technique at different values of power from 100 to 150 W. A methodical study of the influence of power on structural and physical properties of the thin films was effected out. Films structure have been investigated by X-ray Diffraction (XRD) and the grain size decreased with increasing the power. Scanning Electron Microscope (SEM) used to define the thickness, where the thickness increased with the increasing of power. The surface morphology was characterized by Atomic Force Microscope (AFM) as well as by optical microscope for CrN thin films. This work shows that the residual stresses of these films, created from process, increased with the increasing of power. The corrosion examinations were presented by potentiodynamic method, Tafel curves, and electrochemical impedance spectroscopy at water solution. The best corrosion resistance characteristics are exhibited by CrN films at 150 W, having the smallest grain size.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Alhajri, N., in Science and Technology, King Abdullah Univ., 2016, p. 149.

    Google Scholar 

  2. 2

    Zeghni, A., MSc Thesis, Dublin City University, 2003, p. 171.

  3. 3

    Clark, J., in Environmental Sciences, Plymouth Univ., 1995, p. 265.

    Google Scholar 

  4. 4

    Shinde, V.P. and Patil, P.P., Electrochim. Acta, 2012, vol. 78, pp. 483–494.

    CAS  Article  Google Scholar 

  5. 5

    Rafi, H.K., Ram, G.D.J., Phanikumar, G., and Rao, K.P., Proc. The World Congress on Engineering, London, 2010.

  6. 6

    Chun, S.-Y., J. Korean Phys. Soc., 2010, vol. 56, pp. 1134–1139.

    CAS  Article  Google Scholar 

  7. 7

    Choe, H.-C., Ko, Y.-M., and Park, H.-O., Met. Mater. Int., 2006, vol. 12, pp. 365–369.

    CAS  Article  Google Scholar 

  8. 8

    Lin, M.-T., Wan, C.-H., and Wu, W., Int. J. Electrochem. Sci., 2014, vol. 9, pp. 7832–7845.

    Google Scholar 

  9. 9

    Zaman, A., MSc Thesis, Univ. of Texas at Arlington, 2014, p. 91.

  10. 10

    Abdallah, B., Naddaf, M., and A-Kharroub, M., Nucl. Instrum. Methods Phys. Res., Sect. B, 2013, vol. 298, pp. 55–60.

    CAS  Google Scholar 

  11. 11

    Subramanian, B. and Jayachandran, M., Corros. Eng., Sci. Technol., 2013, vol. 46, pp. 554–561.

    Article  Google Scholar 

  12. 12

    Ruden-Muñoz, A., Restrepo-Parra, E., and Sequeda, F., DYNA, 2015, vol. 82, pp. 147–155.

    Article  Google Scholar 

  13. 13

    Shah, H.N., Int. J. Automot. Mech. Eng., 2017, vol. 14, pp. 3872–3886.

    CAS  Article  Google Scholar 

  14. 14

    Ismail, I.M., Abdallah, B., Abou-Kharroub, M., and Mrad, O., Nucl. Instrum. Methods Phys. Res., Sect. B, 2012, vol. 271, pp. 102–106.

    CAS  Google Scholar 

  15. 15

    Liu, C., Bi, Q., Leyland, A., and Matthews, A., Corros. Sci., 2003, vol. 45, no. 6, pp. 1257–1273.

    CAS  Article  Google Scholar 

  16. 16

    Zalnezhad, E., Sarhan, A.A.D.M., and Hamdi, M., Int. J. Precis. Eng. Manuf., 2013, vol. 14, pp. 467–473.

    Article  Google Scholar 

  17. 17

    Bouzida, K., Beliardouh, N.E., and Nouveau, C., Tribol. Ind., 2015, vol. 37, pp. 60–65.

    Google Scholar 

  18. 18

    Kennedy, D.M., Xue, Y., and Mihaylova, E., Eng. J. Tech., 2005, vol. 59, pp. 287–292.

    Google Scholar 

  19. 19

    Montesano, L., Gelfi, M., Pola, A., Colombi, P., and La Vecchia, G.M., Metall. Ital., 2013, vol. 9, no. 2, pp. 3–11.

    Google Scholar 

  20. 20

    Perillo, P.M., Am. J. Mater. Sci. Appl., 2015, vol. 3, pp. 38–43.

    Google Scholar 

  21. 21

    Merie, V.V., Negrea, G., and Modi, E., IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 147, p. 012020.

  22. 22

    Rihawy, M.S., Abdallah, B., and Ahmad, M., Nucl. Instrum. Methods Phys. Res., Sect. B, 2018, vol. 430, pp. 64–71.

    CAS  Google Scholar 

  23. 23

    Rahmane, S., Djouadi, M.A., Aida, M.S., Barreau, N., Abdallah, B., and Hadj Zoubir, N., Thin Solid Films, 2010, vol. 519, pp. 5–10.

    CAS  Article  Google Scholar 

  24. 24

    Jazmati, A.K. and Abdallah, B., Mater. Res., 2018, vol. 21, no. 3, pp. 1–6.

    Article  Google Scholar 

  25. 25

    Abdallah, B., Kakhia, M., Alssadat, W., and Rihawy, M.S., Iran. J. Sci. Technol., 2018.

  26. 26

    Shah, H.N., Chawla, V., Jayaganthan, R., and Kaur, D., Bull. Mater. Sci., 2010, vol. 33, pp. 103–110.

    CAS  Article  Google Scholar 

  27. 27

    Salo, S.A., Abdallah, B., Kakhia, M.A.a.M., 2019.

  28. 28

    Farooq, M. and Lee, Z.H., J. Korean Phys. Soc., 2002, vol. 40, pp. 511–515.

    CAS  Google Scholar 

  29. 29

    Abdallah, B., Jazmati, A.K., and Kakhia, M., Optik, 2018, vol. 158, pp. 1113–1122.

    CAS  Article  Google Scholar 

  30. 30

    Shah, H.N., Chawla, V., Jayaganthan, R., and Kaur, D., Bull. Mater. Sci., 2010, vol.33, pp. 103–110.

    CAS  Article  Google Scholar 

  31. 31

    Abdallah, B., Jazmati, A.K., and Refaai, R., Mater. Res., 2017, vol. 20, pp. 607–612.

    CAS  Article  Google Scholar 

  32. 32

    Chawla, V., Jayaganthan, R., and Chandra, R., Mater. Charact., 2008, vol. 59, pp. 1015–1020.

    CAS  Article  Google Scholar 

  33. 33

    Alfonso, E., Olaya, J., and Cubillos, G., in Crystallization—Science and Technology, InTech, 2012, pp. 397–431.

    Google Scholar 

  34. 34

    Shah, H.N., Jayaganthan, R., and Kaur, D., Surf. Eng., 2008, pp. 1–9.

  35. 35

    Rahmane, S., Djouadi, M.A., Aida, M.S., Barreau, N., Abdallah, B., and Hadj Zoubir, N., Thin Solid Films, 2010, vol. 519, pp. 5–10.

    CAS  Article  Google Scholar 

  36. 36

    Alyones, J., Salameh, M.A., and Abdallah, B., Silicon, 2019. https://doi.org/10.1007/s12633-019-00345-9

  37. 37

    Sánchez, G., Abdallah, B., Tristant, P., Dublanche-Tixier, B.C., Djouadi, M.A., Besland, M.P., Jouan, P.Y., and Alles, A.B., J. Mater. Sci., 2009, vol. 44, pp. 6125–6134.

    Article  Google Scholar 

  38. 38

    Frankel, G.S., in Active Protective Coatings: New-Generation Coatings for Metals, Hughes, A.E., Mol, J.M.C., Zheludkevich, M.L., and Buchheit, R.G., Eds., Dordrecht: Springer, 2016, pp. 17–32.

    Google Scholar 

  39. 39

    Wang, Z.B., Lu, J., and Lu, K., Surf. Coat. Technol., 2006, vol. 201, pp. 2796–2801.

    CAS  Article  Google Scholar 

  40. 40

    Song, G.-H., Yang, X.-P., Xion,g G.-L., Lou, Z., and Chen, L.-J., Vacuum, 2013, vol. 89, pp. 136–141.

    CAS  Article  Google Scholar 

  41. 41

    Abdallah, B., Kakhia, M., Alssadat, W., and Rihawy, M.S., Iran. J. Sci. Technol., Trans. A: Sci., 2018, pp. 1–9.

  42. 42

    Braic, M., Zamfira, S., Balaceanu, M., Braic, V., Pavelescu, G., Zamfira, A., and Vladescu, A., J. Optoelectron. Adv. Mater., 2003, vol. 5, pp. 503–510.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors greatly acknowledge funds to this project by Professor I. Othman, the Director General of the Atomic Energy Commission of Syria.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Abdallah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdallah, B., Kakhia, M., Alssadat, W. et al. Study of Power Effect on Structural, Mechanical Properties and Corrosion Behavior of CrN thin Films Deposited by Magnetron Sputtering. Prot Met Phys Chem Surf (2021). https://doi.org/10.1134/S2070205120060027

Download citation

Keywords:

  • CrN films
  • DC magnetron sputtering
  • structural
  • corrosion resistance