On the Electrochemical Deposition and Properties of Nickel-Based Composite Coatings


Nickel-based composite electrochemical coatings (CECs) modified with graphite nitrate have been obtained. Their microstructure and functional properties (sliding friction coefficient and protective ability) have been studied. It has been found that when a dispersion of graphite nitrate is introduced into a sulfate–chloride electrolyte for nickel plating, the sliding friction coefficient of the formed CECs decreases by half, and the range of potentials of the passive state of these composite coatings increases by 1.26–1.32 times.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Antropov, L.I. and Lebedinskii, Yu.N., Kompozitsionnye elektrokhimicheskie pokrytiya i materialy (Composite Electrochemical Coatings and Materials), Kiev: Tekhnika, 1986.

  2. 2

    Saifullin, R.S., Fizikokhimiya neorganicheskikh polimernykh i kompozitsionnykh materialov (Physical Chemistry of Inorganic Polymer and Composite Materials), Moscow: Khimiya, 1990.

  3. 3

    Tseluikin, V.N., Nanotechnol. Russ., 2014, vol. 9, nos. 1–2, pp. 1–14.

    CAS  Article  Google Scholar 

  4. 4

    Tseluikin, V.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 2, pp. 254–266; Tseluikin, V.N., Koreshkova, A.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 3, pp. 453–456; Tseluikin, V.N., Koreshkova, A.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, pp. 1047–1049.

    CAS  Article  Google Scholar 

  5. 5

    Gül, H., Kılıç, F., Uysal, M., et al., Appl. Surf. Sci., 2012, vol. 258, no. 10, pp. 4260–4267.

    Article  Google Scholar 

  6. 6

    Gupta, R.N., Das, A.K., and Nagahanumiah, Henal Shah, Mater. Manuf. Processes, 2016, vol. 31, no. 1, pp. 42–47.

    CAS  Article  Google Scholar 

  7. 7

    Mosallanejad, M.H., Shafyei, A., and Akhavan, S., Can. Metall. Q., 2016, vol. 55, no. 2, pp. 147–155.

    CAS  Article  Google Scholar 

  8. 8

    Gobinda Gyawali, Bhupendra Joshi, Khagendra Tripathi, and Soo Wohn Lee, J. Mater. Eng. Perform., 2017, vol. 26, no. 9, pp. 4462–4469.

    CAS  Article  Google Scholar 

  9. 9

    Alok Kumar Chaudhari, Dhananjay Kumar Singh, and Singh, V.B., Mater. Res. Express, 2018, vol. 5, no. 5, p. 056507.

  10. 10

    Burkat, G.K. and Dolmatov, V.Yu., Phys. Solid State, 2004, vol. 46, no. 4, pp. 703–710.

    CAS  Article  Google Scholar 

  11. 11

    Chayeuski, V.V., Zhylinski, V.V., Rudak, P.V., et al., Appl. Surf. Sci., 2018, vol. 446, pp. 18–26.

    CAS  Article  Google Scholar 

  12. 12

    Tseluikin, V.N., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 3, pp. 433–436.

    CAS  Article  Google Scholar 

  13. 13

    Giannopoulos, F., Chronopoulou, N., Bai, J., et al., Electrochim. Acta, 2016, vol. 207, pp. 76–86.

    CAS  Article  Google Scholar 

  14. 14

    Gizem Hatipoglu, Muhammet Kartal, Mehmet Uysal, et al., Tribol. Int., 2016, vol. 98, pp. 59–73.

    CAS  Article  Google Scholar 

  15. 15

    Algul, H., Tokur, M., Ozcan, S., et al., Appl. Surf. Sci., 2015, vol. 359, pp. 340–348.

    CAS  Article  Google Scholar 

  16. 16

    Ghulam Yasin, Muhammad Abubaker Khan, Muhammad Arif, et al., J. Alloys Compd., 2018, vol. 755, pp. 79–88.

    CAS  Article  Google Scholar 

  17. 17

    Ubbelohde, A.R. and Lewis, F.A., Graphite and Its Crystal Compounds, London: Clarendon Press, 1960.

    Google Scholar 

  18. 18

    Fialkov, A.S., Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Carbon, Intralayer Bonds and Composites on its Base), Moscow: Aspekt-Press, 1997.

  19. 19

    Yakovlev, A.V., Finaenov, A.I., Zabud’kov, S.L., and Yakovleva, E.V., Russ. J. Appl. Chem., 2006, vol. 79, no. 11, pp. 1741–1751.

    CAS  Article  Google Scholar 

  20. 20

    Yakovlev, A.V., Yakovleva, E.V., Rakhmetulina, L.A., et al., Izv. Vyssh. Uchebn. Zaved.,Khim. Khim. Tekhnol., 2018, vol. 61, no. 7, pp. 121–128.

    Google Scholar 

  21. 21

    Pavlycheva, N.K., Peplov, A.A., and Demin, A.P., Opt. Zh., 2007, vol. 74, no. 3, pp. 29–32.

    Google Scholar 

  22. 22

    Saifullin, R.S. and Abdullin, I.A., Ross. Khim. Zh., 1999, vol. 63, nos. 3–4, pp. 63–67.

    Google Scholar 

  23. 23

    Kaesche, H., Die Korrosion der Metalle: Physikalisch-Chemische Prinzipien und Aktuelle Probleme, Berlin: Springer, 1966.

    Google Scholar 

  24. 24

    Marshakov, I.K., Prot. Met., 2002, vol. 38, no. 2, pp. 118–124.

    CAS  Article  Google Scholar 

  25. 25

    Gal’vanicheskie pokrytiya v mashinostroenii. Spravochnik (Galvanic Coatings for Machinery Manufacture. Handbook), Shluger, M.A., Ed., Moscow: Mashinostroenie, 1985, vol. 1.

    Google Scholar 

Download references


The work was supported by the Russian Foundation for Basic Research, project no. 18-29-19048\18.

Author information



Corresponding author

Correspondence to V. N. Tseluikin.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tseluikin, V.N., Yakovlev, A.V. On the Electrochemical Deposition and Properties of Nickel-Based Composite Coatings. Prot Met Phys Chem Surf 56, 374–378 (2020). https://doi.org/10.1134/S2070205120020288

Download citation