The Effect of Ultrasound Treatment on Physicochemical and Tribological Properties of Electrolytic Cu–Sn–TiO2 Coatings

Abstract

In this work, Cu–Sn–TiO2 composite coatings have been deposited from an oxalic acid electrolyte additionally containing 4 g/dm3 TiO2. Using energy-dispersive X-ray spectroscopy and X-ray fluorescence analysis, the influence of ultrasonic treatment and current load on the inclusion and distribution of the dispersed TiO2 phase in the Cu–Sn metal matrix has been established. Scanning electron microscopy confirmed that ultrasound treatment leads to the formation of more uniform Cu–Sn–TiO2 coatings. It has been shown that an increase in the cathodic current density from 0.5 to 1.5 A/dm2 leads to the formation of coatings with higher TiO2 content. The effect of ultrasonic action and current load on the microhardness, tribological properties, and corrosion resistance of the formed Cu–Sn–TiO2 composite coatings have been studied.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Bengoa, L.N., Tuckar, W.R., Zabala, N., and Egli, W.A., Surf. Coat. Technol., 2014, vol. 253, pp. 241–248.

    CAS  Article  Google Scholar 

  2. 2

    Hovestad, A., Tacken, R.A., and Mannetje, H.H., Phys. Status Solidi, 2008, vol. 5, pp. 3506–3509.

    CAS  Google Scholar 

  3. 3

    Jung, M., Lee, G., and Choi, J., Electrochim. Acta, 2017, vol. 241, pp. 229–236.

    CAS  Article  Google Scholar 

  4. 4

    Walsh, F.C. and de Leon, C.P., Trans.Inst. Met. Finish., 2014, vol. 92, pp. 83–98.

    CAS  Article  Google Scholar 

  5. 5

    Baghery, P., Farzam, M., Mousavi, A.B., and Hosseini, M., Surf. Coat. Technol., 2010, vol. 204, pp. 3804–3810.

    CAS  Article  Google Scholar 

  6. 6

    Vasil’eva, E.A., Tsurkan, A.V., Protsenko, V.S., and Danilov, F.I., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, pp. 532–537.

    Article  Google Scholar 

  7. 7

    Rezaeiolum, A., Aliofkhazraei, M., Karimzadeh, A., et al., Surf. Eng., 2017, vol. 34, pp. 423–432.

    Article  Google Scholar 

  8. 8

    Aruna, S. and Srinivas, G., Surf. Eng., 2015, vol. 31, pp. 708–713.

    CAS  Article  Google Scholar 

  9. 9

    Lajevardi, S., Shahrabi, T., and Szpunar, J., Appl. Surf. Sci., 2013, vol. 279, pp. 180–188.

    CAS  Article  Google Scholar 

  10. 10

    Velichenko, A.B., Knysh, V.A., Lukyanenko, T.V., et al., Russ. J. Electrochem., 2008, vol. 44, pp. 1251–1256.

    CAS  Article  Google Scholar 

  11. 11

    Bogomazova, N.V., Antikhovich, I.V., Chernik, A.A., and Zharskii, I.M., Russ. J. Appl. Chem., 2014, vol. 87, pp. 1235–1239.

    CAS  Article  Google Scholar 

  12. 12

    Zhou, N., Wang, S., and Walsh, F.C., Electrochim. Acta, 2008, vol. 283, pp. 568–577.

    Article  Google Scholar 

  13. 13

    Yaskel’chik, V.V., Anan’ev, M.V., Ostanina, T.N., et al., Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokrytiya, 2017, no. 4, pp. 53–61. Yaskel’chik, V.V., Anan’ev, M.V., Ostanina, T.N., et al., Univ. Proc. Powder Metall. Funct. Coat., 2017, no. 4, pp. 53–61.

  14. 14

    Chayeuski, V.V., Zhylinski, V.V., Rudak, P.V., et al., Appl. Surf. Sci., 2018, vol. 446, pp. 18–26.

    CAS  Article  Google Scholar 

  15. 15

    Cui, G., Bi, Q., Niu, M., et al., Tribol. Int., 2013, vol. 60, pp. 25–35.

    CAS  Article  Google Scholar 

  16. 16

    Nickchi, T. and Ghorbani, M., Surf. Coat. Technol., 2009, vol. 203, pp. 3037–3043.

    CAS  Article  Google Scholar 

  17. 17

    Kasach, A.A., Kurilo, I.I., Kharitonov, D.S., et al., Russ. J. Appl. Chem., 2018, vol. 91, pp. 207–213.

    CAS  Article  Google Scholar 

  18. 18

    Kasach, A.A., Kurilo, I.I., Kharitonov, D.S., et al., Russ. J. Appl. Chem., 2018, vol. 91, pp. 591–596.

    CAS  Article  Google Scholar 

  19. 19

    Lampke, T., Dietrich, D., Leopold, A., et al., Surf. Coat. Technol., 2008, vol. 202, pp. 3967–3934.

    CAS  Article  Google Scholar 

  20. 20

    Wielage, B., Lampke, T., Zacher, M., and Dietrich, D., Key Eng. Mater., 2008, vol. 384, pp. 283–309.

    CAS  Article  Google Scholar 

  21. 21

    Metikoš-Huković, M., Babić, R., Škugor, I., and Grubač, Z., Corros. Sci., 2011, vol. 53, pp. 347–352.

    Article  Google Scholar 

  22. 22

    Ma, A.L., Jiang, S.L., Zheng, Y.G., and Ke, W., Corros. Sci., 2015, vol. 91, pp. 245–261.

    CAS  Article  Google Scholar 

  23. 23

    Thurber, C.R., Ahmad, Y.H., Sanders, S.F., et al., Curr. Appl. Phys., 2016, vol. 16, pp. 387–396.

    Article  Google Scholar 

  24. 24

    Metikoš-Huković, M., Škugor, I., Grubač, Z., and Babić, R., Electrochim. Acta, 2010, vol. 55, pp. 3123–3129.

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Education of the Republic of Belarus, grant no. 20192233 “Electrochemical Composite Coatings with Photocatalytic Properties Based on Tin Alloys.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Kasach.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kasach, A.A., Kharitonov, D.S., Wrzesińska, A. et al. The Effect of Ultrasound Treatment on Physicochemical and Tribological Properties of Electrolytic Cu–Sn–TiO2 Coatings. Prot Met Phys Chem Surf 56, 385–391 (2020). https://doi.org/10.1134/S2070205120020100

Download citation

Keywords:

  • composite coating
  • ultrasound
  • anatase
  • tribological properties
  • microhardness