Thermal Stability and Electrochemical Properties of Ti–Al–Mo–Ni–N Coatings Fabricated by Arc-PVD

Abstract

The electrochemical properties of Ti–Al–Mo–Ni–N coatings with a molybdenum content of 20 and 25 at % fabricated by cathodic arc deposition (Arc-PVD) are studied. Series 2 coatings are characterized by the presence of Mo in both a chemically bound (Mo2N, as with series 1 coatings) and free states (i.e., metallic phase). Considering the multilayer architecture of coatings based on the mixed nitride (TiAl)N and molybdenum-containing phases, their corrosion destruction proceeds layer by layer due to different corrosion resistance of these phases in acidic and alkaline environments. Annealing the coatings at 600°C in vacuum gives rise to diffusional processes in them that lead to a growth of crystallites of the (TiAl)N nitride phase and a decrease in the microstrain. This phenomenon is considerably more conspicuous in series 2 coatings, which can be explained by the higher diffusivity of Mo atoms in the metallic phase than in the case of their counterparts in the nitride phase.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Belov, D.S., Blinkov, I.V., and Volkhonskii, A.O., Surf. Coat. Technol., 2014, vol. 260, pp. 186–197.

    CAS  Article  Google Scholar 

  2. 2

    Blinkov, I.V., Belov, D.S., Volkhonskii, A.O., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 81–88; Blinkov, I.V., Belov, D.S., Volkhonskii, A.O., et al., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 3, pp. 269–279.

    CAS  Article  Google Scholar 

  3. 3

    Yang, Q., Zhao, L.R., Patnaik, P.C., et al., Wear, 2006, vol. 261, no. 2, pp. 119–125.

    CAS  Article  Google Scholar 

  4. 4

    Lugscheider, E., Knotek, O., Bobzin, K., et al., Surf. Coat. Technol., 2000, vols. 133–134, pp. 362–368.

    Article  Google Scholar 

  5. 5

    Franz, R. and Mitterer, C., Surf. Coat. Technol., 2013, vol. 228, pp. 1–13.

    CAS  Article  Google Scholar 

  6. 6

    Solak, N., Ustel, F., Urgen, M., et al., Surf. Coat. Technol., 2003, vols. 174–175, pp. 713–719.

    Article  Google Scholar 

  7. 7

    Gassner, G., Mayrhofer, P.H., Kutschej, K., et al., Surf. Coat. Technol., 2006, vol. 201, pp. 3335–3341.

    CAS  Article  Google Scholar 

  8. 8

    Sergevnin, V.S., Blinkov, I.V., Volkhonskii, A.O., et al., Appl. Surf. Sci., 2016, vol. 388, pp. 13–23.

    CAS  Article  Google Scholar 

  9. 9

    Sergevnin, V.S., Blinkov, I.V., Belov, D.S., et al., Int. J. Adv. Manuf. Technol., 2018, vol. 98, pp. 593–601.

    Article  Google Scholar 

  10. 10

    Sergevnin, V.S., Blinkov, I.V., Volkhonskii, A.O., et al., Surf. Coat. Technol., 2018. Sergevnin, V.S., Blinkov, I.V., Volkhonskii, A.O., et al., Surf. Coat. Technol., 2019, vol. 376, pp. 38–43.

    CAS  Article  Google Scholar 

  11. 11

    Lihua, Y., Dong, S., Xu, J., and Kojima, I., Thin Solid Films, 2008, vol. 516, pp. 1864–1870.

    Article  Google Scholar 

  12. 12

    Soderberg, H., Molina-Aldareguia, J.M., Hultman, L., et al., J. Appl. Phys., 2005, vol. 97, p. 114327.

    Article  Google Scholar 

  13. 13

    Min Zhang, Kwang Ho Kim, Zhigang Shao, et al., J. Power Sources, 2014, no. 253, pp. 201–204.

  14. 14

    Tomaszewski, Ł., Gulbinski, W., Urbanowicz, A., et al., Vacuum, 2015, no. 121, pp. 223–229.

  15. 15

    Belov, D.S., Blinkov, I.V., Volkhonskii, A.O., et al., Appl. Surf. Sci., 2016, vol. 388, pp. 2–12.

    CAS  Article  Google Scholar 

  16. 16

    Heau, C., Fillit, R.Y., Vaux, F., et al., Surf. Coat. Technol., 1999, vols. 120–121, pp. 200–205.

    Article  Google Scholar 

  17. 17

    Barshilia, H., Prakash, M.S., Jain, A., et al., Vacuum, 2005, vol. 77, pp. 169–179.

    CAS  Article  Google Scholar 

  18. 18

    Barshilia, H.C., Iain, A., and Rajam, K.S., Vacuum, 2004, vol. 72, pp. 241–248.

    Article  Google Scholar 

  19. 19

    Ryabchikov, A.I., Ryabchikov, I.A., Stepanov, I.B., et al., Vacuum, 2005, vol. 78, pp. 445–449.

    CAS  Article  Google Scholar 

  20. 20

    Sanjines, R., Wiemer, C., Almeida, J., et al., Thin Solid Films, 1996, vol. 290, pp. 334–338.

    Article  Google Scholar 

  21. 21

    Chourasia, A.R. and Chopra, D.R., Thin Solid Films, 1995, vol. 266, p. 298.

    CAS  Article  Google Scholar 

  22. 22

    Shannon, R.D., Acta Crystallogr., Sect. A: Cryst. Phys.,Diffr., 1976, vol. 32, p. 238.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00555.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. P. Demirov.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demirov, A.P., Sergevnin, V.S., Blinkov, I.V. et al. Thermal Stability and Electrochemical Properties of Ti–Al–Mo–Ni–N Coatings Fabricated by Arc-PVD. Prot Met Phys Chem Surf 56, 358–362 (2020). https://doi.org/10.1134/S2070205120020057

Download citation

Keywords:

  • Arc-PVD coating
  • electrochemical properties
  • thermal stability
  • nanostructure