Skip to main content
Log in

Hybrid Organosilica Coatings for Solid Phase Microextraction: Highly Efficient Adsorbents for Determination of Trace Parabens

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

New hybrid organosilica coatings with different amount of alkyl functional groups on a quartz fiber for solid phase microextraction (SPME) have been obtained by the of sol–gel synthesis in the presence of polyethylene glycol (PEG). The structural-sorption properties of the synthesized silica coatings of various compositions have been studied. According to the thermogravimetric analysis, the main thermolysis of the adsorption coatings’ organic layer was observed at temperatures higher than 350°C. The effect of synthesis conditions on the thermal stability of the obtained PEG-based organosilica coating has been studied. It has been established that the textural characteristics of the produced coatings for SPME and their adsorption properties can be controlled using different PEG and silica precursors and the equivalence ratio in the reaction mixture. Good prospects of application of the fabricated coatings for SPME have been demonstrated in paraben extraction and concentration in aqueous solutions at 24°C and pH 3.0–5.5 with their subsequent gas chromatography determination. The suggested technique was characterized by good accuracy and reproducibility (RSD ≤ 2.3%). Comparative studies of the obtained hybrid organosilica coatings for SPME with a commercially available fiber with a bipolar polymer coating—divinylbenzene/carboxen/polydimethylsiloxane—have been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Soni, M.G., Taylor, S.L., Greenberg, N.A., and Burdock, G.A., Food Chem. Toxicol., 2002, vol. 40, pp. 1335–1373.

    Article  Google Scholar 

  2. Soni, M.G., Carabin, I.G., and Burdock, G.A., Food Chem. Toxicol., 2005, vol. 43, pp. 985–1015.

    Article  Google Scholar 

  3. Elder, R.L., Int. J. Toxicol., 2008, no. 4, Suppl., pp. 1–82.

  4. http://www.ec.europa.eu/health/scientific_committees/ consumer_safety/docs/sccs_o_132.pdf.

  5. Frederiksen, H., Jorgensen, N., and Andersson, A.-M., J. Exposure Sci. Environ. Epidemiol., 2011, vol. 21, pp. 262–333.

    Article  Google Scholar 

  6. Farajzadeh, M.A., Djozan, D.J., and Bakhtiyari, R.F., Talanta, 2010, vol. 81, pp. 1360–1367.

    Article  Google Scholar 

  7. Lokhnauth, J.K. and Snow, N.H., Anal. Chem., 2005, vol. 77, pp. 5938–5946.

    Article  Google Scholar 

  8. Zaitsev, V.N. and Zui, M.F., J. Anal. Chem., 2014, vol. 69, no. 8, pp. 715–728.

    Article  Google Scholar 

  9. https://www.sigmaaldrich.com/technical-documents/ articles/analytical/selecting-spmefibers.html.

  10. Zhang, Zh., Zhu, L., Ma, Yu., Huang, Y., and Li, G., Analyst, 2013, vol. 138, pp. 1156–1166.

    Article  Google Scholar 

  11. Li, Y., Wang, Y., Zhang, J., and Sun, C., Environ. Monit. Assess., 2012, vol. 184, pp. 4345–4353.

    Article  Google Scholar 

  12. Wong, M.Y., Cheng, W.R., Liu, M.H., Tian, W.C., et al., Talanta, 2012, vol. 101, pp. 307–313.

    Article  Google Scholar 

  13. Li, Z., Ma, R., Bai, Sh., Wang, Ch., and Wang, Z., Talanta, 2014, vol. 119, pp. 498–504.

    Article  Google Scholar 

  14. Wang, T., Chen, Y., Ma, J., Hu, M., et al., Anal. Bioanal. Chem., 2014, vol. 406, no. 20, pp. 4955–4963.

    Article  Google Scholar 

  15. Lopez-Darias, J., Anderson, J.L., Pino, V., and Afonso, A.M., Anal. Bioanal. Chem., 2011, vol. 401, pp. 2965–2976.

    Article  Google Scholar 

  16. He, J., Chen, Si., Jiang, Y., Shen, Y., Zhu, J., Wei, H., Zhang, H., and Lu, K., J. Sep. Sci., 2012, vol. 35, pp. 308–314.

    Article  Google Scholar 

  17. Walles, M., Mullett, W.M., and Pawliszyn, J., J. Chromatogr. A, 2004, vol. 1025, p. 85.

    Article  Google Scholar 

  18. Chong, S.L., Wang, D., Hayes, J.D., Wilhite, B.W., et al., Anal. Chem., 1997, vol. 69, p. 3889.

    Article  Google Scholar 

  19. Kumar, A., Gaurav, M.A.K., Tewary, D.K., and Singh, B., Anal. Chim. Acta, 2008, vol. 610, pp. 1–14.

    Article  Google Scholar 

  20. Piri-Moghadam, H., Nazmul, A.Md., and Pawliszyn, J., Anal. Chim. Acta, 2017, vol. 984, pp. 42–65.

    Article  Google Scholar 

  21. Barczak, M., Mcdonagh, C., and Wencel, D., Microchim. Acta, 2016, vol. 183, no. 7, pp. 2085–2109.

    Article  Google Scholar 

  22. Sarafraz-yazdi, A., Piri-Moghadam, H., Es’haghi, Z., and Sepehr, S., Anal. Methods, 2010, vol. 2, pp. 746–752.

    Article  Google Scholar 

  23. Yu, J., Dong, L., Wu, C., Wu, L., and Xing, J., J. Chromatogr. A, 2002, vol. 978, pp. 37–48.

    Article  Google Scholar 

  24. Pragst, F., Anal. Bioanal. Chem., 2007, vol. 388, pp. 1393–1414.

    Article  Google Scholar 

  25. Ghader, M., Shokoufi, N., Es-haghi, A., and Kargosha, K., Anal. Bioanal. Chem., 2017, vol. 409, no. 29, pp. 6739–6744.

    Article  Google Scholar 

  26. Lopez-Darias, J., Pino, V., Meng, Y., Anderson, J.L., et al., J. Chromatogr. A, 2010, vol. 1217, no. 46, pp. 7189–7197.

    Article  Google Scholar 

  27. Diaz-Alvarez, M., Smith, S.P., Spivak, D.A., and Martin-Esteban, A., J. Sep. Sci., 2016, vol. 39, no. 3, pp. 552–558.

    Article  Google Scholar 

  28. Liu, D., Song, N., Cheng, Y., Chen, D., et al., RSC Adv., 2014, vol. 4, pp. 49153–49160.

    Article  Google Scholar 

  29. Chen, Y. and Sidisky, L.M., Anal. Chim. Acta, 2012, vol. 743, pp. 61–68.

    Article  Google Scholar 

  30. Wu, M., Zhang, H., Zeng, B., and Zhao, F., J. Chromatogr. A, 2015, vol. 1384, pp. 22–27.

    Article  Google Scholar 

  31. Es-haghi, A., Hosseininasa, V., and Bagheri, H., Anal. Chim. Acta, 2014, vol. 813, pp. 48–55.

    Article  Google Scholar 

  32. High Performance Liquid Chromatography in Pesticide Residue Analysis, Tuzimski, T. and Sherma, J., Eds., Boca Raton, FL: CRC Press, 2015, p. 582.

    Google Scholar 

  33. Bagheri, H., Piri-moghadam, H., and Ahdi, T., Anal. Chim. Acta, 2012, vol. 742, pp. 45–53.

    Article  Google Scholar 

  34. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Socrates, G., Ed., Chichester: John Wiley and Sons, 2001.

    Google Scholar 

  35. Lisichkin, G.V., Fadeev, A.Yu., Serdan, A.A., and Nesterenko, P.N., Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow: Fizmatlit, 2003.

    Google Scholar 

  36. Blaug, S.M. and Grant, D.E., J. Soc. Cosmet. Chem., 1974, vol. 25, no. 9, pp. 495–506.

    Google Scholar 

  37. Alexander, K.S., Laprade, B., Mauger, J.W., and Paruta, A.N., J. Pharm. Sci., 1978, vol. 67, no. 5, pp. 624–627.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kobylinska.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shnayder, B.A., Levchyk, V.M., Zui, M.F. et al. Hybrid Organosilica Coatings for Solid Phase Microextraction: Highly Efficient Adsorbents for Determination of Trace Parabens. Prot Met Phys Chem Surf 55, 657–666 (2019). https://doi.org/10.1134/S2070205119040221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119040221

Keywords:

Navigation