Skip to main content
Log in

Photoelectrocatalytic Oxidation of Formic Acid in the Visible Spectral Region on Films of Nanocrystalline Titanium Oxide Doped by Bismuth

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

A method of formation of film coatings of titanium dioxide doped by bismuth ions (Bi3+) is developed on the basis of sol–gel synthesis and used to form film coatings of titanium dioxide with the anatase structure on the photoanode surface. Thus, samples containing 0.5 to 20 wt % of Bi are obtained. It is shown that the doping of titanium dioxide by bismuth ions results in a shift of light absorption to the visible region of electromagnetic radiation spectrum. The absorption level depends on the concentration of bismuth and reaches its maximum for samples containing 0.5 and 1.0 wt % of Bi. It is suggested on the basis of the data of X-ray phase analysis that an increase in the content of bismuth to 20 wt % leads to destruction of crystalline regions and amorphization of bismuth oxide and titanium oxide. The obtained coatings are studied as catalysts of photoelectrocatalytic oxidation of formic acid under illumination by monochromatic and visible light. It is found that the highest catalytic effect is observed on samples containing 1.0 wt % of bismuth. The forbidden gap width is estimated on the basis of absorption of monochromatic (464 nm) light, and it is shown that photoelectrocatalytic oxidation of formic acid in the visible spectral range accompanied by formiate ion adsorption on the illuminated photoanode surface is probably due to a decrease in the forbidden gap width in doped titanium dioxide to 2.7 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fujishima, A. and Honda, K., Nature, 1972, vol. 238, p. 37.

    Article  Google Scholar 

  2. Ni, M., Leung, M.K., and Leung, D.Y.C., Int. J. Hydrogen Energy, 2007, vol. 32, no. 13, p. 2305.

    Article  Google Scholar 

  3. Ma, Y., Wang, X., Jia, Y., et al., Chem. Rev., 2014, vol. 114, no. 19, p. 9987.

    Article  Google Scholar 

  4. Li, X., Yu, J., Low, J., et al., J. Mater. Chem. A, 2015, vol. 3, no. 6, p. 2485.

    Article  Google Scholar 

  5. Chen, X., Shen, S., Guo, L., et al., Chem. Rev., 2010, vol. 110, no. 11, p. 6503.

    Article  Google Scholar 

  6. Warren, E.L., McKone, J.R., Boettcher, S.W., et al., Chem. Rev., 2010, vol. 110, p. 6446.

    Article  Google Scholar 

  7. Kudo, A. and Miseki, Y., Chem. Soc. Rev., 2009, vol. 38, no. 1, p. 253.

    Article  Google Scholar 

  8. Maeda, K., J. Photochem. Photobiol., C, 2011, vol. 12, no. 4, p. 237.

    Article  Google Scholar 

  9. Han, F., Kambala, V.S., Srinivasan, M., et al., Appl. Catal., A, 2009, vol. 359, nos. 1–2, p. 25.

  10. Antopoulou, M., Evgenidou, E., Lambropoulou, D., et al., Water Res., 2014, vol. 53, p. 215.

    Article  Google Scholar 

  11. Pelaez, M., Nolan, N.T., Pillai, S.C., et al., Appl. Catal., B, 2012, vol. 125, p. 331.

    Article  Google Scholar 

  12. Hoffmann, M.R., Martin, S.T., Choi, W., et al., Chem. Rev., 1995, vol. 95, p. 69.

    Article  Google Scholar 

  13. Akpan, U.G. and Hameed, B.H., J. Hazard. Mater., 2009, vol. 170, nos. 2–3, p. 520.

    Article  Google Scholar 

  14. Fujishima, A., Rao, T.N., and Tryk, D.A., J. Photochem. Photobiol., C, 2000, vol. 1, no. 1, p. 1.

    Article  Google Scholar 

  15. Chen, C., Ma, W., and Zhao, J., Chem. Soc. Rev., 2010, vol. 39, no. 11, p. 4206.

    Article  Google Scholar 

  16. Park, H., Park, Y., Kim, W., et al., J. Photochem. Photobiol., C, 2013, vol. 15, no. 1, p. 1.

    Article  Google Scholar 

  17. Shiraishi, Y. and Hirai, T., J. Photochem. Photobiol., C, 2008, vol. 9, no. 4, p. 157.

    Article  Google Scholar 

  18. Lincebigler, A.L., Lu, G., and Yates, J.T., Chem. Rev., 1995, vol. 95, no. 3, p. 735.

    Article  Google Scholar 

  19. Xu, Q., Yu, J., Zhang, J., et al., Chem. Commun., 2015, vol. 51, no. 37, p. 7950.

    Article  Google Scholar 

  20. Yu, J., Low, J., Xiao, W., et al., J. Am. Chem. Soc., 2014, vol. 136, no. 25, p. 8839.

    Article  Google Scholar 

  21. Li, X., Wen, J.Q., Low, J.X., et al., Sci. China Chem., 2014, vol. 57, p. 70.

    Google Scholar 

  22. Fu, J., Cao, S., Yu, J., et al., Dalton Trans., 2014, vol. 43, no. 24, p. 9158.

    Article  Google Scholar 

  23. Li, X., Liu, H.L., Luo, D.L., et al., Chem. Eng. J., 2012, vol. 180, p. 151.

    Article  Google Scholar 

  24. Dhakshinamoorthy, A., Navalon, S., Corma, A., et al., Energy Environ. Sci., 2012, vol. 5, no. 11, p. 9217.

    Article  Google Scholar 

  25. Zhang, Q.H., Han, W.D., Hong, Y.J., et al., Catal. Today, 2009, vol. 148, nos. 3–4, p. 335.

    Article  Google Scholar 

  26. Hemminger, J.C., Carr, R., and Somorjai, G.A., Chem. Phys. Lett., 1978, vol. 57, no. 1, p. 100.

    Article  Google Scholar 

  27. Inoue, T., Fujishima, A., Konish, S., and Honda, K., Nature, 1979, vol. 227, p. 637.

    Article  Google Scholar 

  28. Hirano, K. and Bard, A.J., J. Electrochem. Soc., 1980, vol. 127, no. 5, p. 1056.

    Article  Google Scholar 

  29. Reiche, H. and Bard, A.J., J. Am. Chem. Soc., 1979, vol. 101, no. 11, p. 3127.

    Article  Google Scholar 

  30. Kanno, T., Oguchi, T., Sakuragi, H., et al., Tetrahedron Lett., 1980, vol. 21, no. 5, p. 467.

    Article  Google Scholar 

  31. Taniguchi, I., Nakashima, K., Yamaguchi, H., and Yasukouchi, K., J. Electroanal. Chem., 1982, vol. 134, p. 191.

    Article  Google Scholar 

  32. Pleskov, Yu.V., Elektrokhimiya, 1981, vol. 17, p. 3.

    Google Scholar 

  33. Grinberg, V.A., Dzhavrishvili, T.V., Vasil’ev, Yu.B., et al., Elektrokhimiya, 1984, vol. 20, no. 1, p. 121.

    Google Scholar 

  34. Gurevich, Yu.Ya. and Pleskov, Yu.V., Itogi Nauki Tekh., Ser.: Elektrokhim., 1982, vol. 18, p. 3.

    Google Scholar 

  35. Mills, A. and Le Hunte, S., J. Photochem. Photobiol., A, 1997, vol. 108, no. 1, p. 1.

    Article  Google Scholar 

  36. Mills, A. and Lee, S.K., J. Photochem. Photobiol., A, 2002, vol. 152, nos. 1–3, p. 233.

    Article  Google Scholar 

  37. Anpo, M. and Takeuchi, M., J. Catal., 2003, vol. 216, p. 505.

    Article  Google Scholar 

  38. Antoniadou, M. and Lianos, P., J. Nanosci. Nanotechnol., 2010, vol. 10, no. 9, p. 6240.

    Article  Google Scholar 

  39. Li, L., Zhang, S., Li, G., and Zhao, H., Anal. Chem. Acta, 2012, vol. 754, p. 47.

    Article  Google Scholar 

  40. Grinberg, V.A., Emets, V.V., Modestov, A.D., et al., Russ. J. Electrochem., 2017, vol. 53, no. 2, p. 217.

    Article  Google Scholar 

  41. Wen, J., Li, X., Liu, W., et al., Chin. J. Catal., 2015, vol. 36, no. 12, p. 2049.

    Article  Google Scholar 

  42. Su, R., Bechstein, R., Kibsgaard, J., et al., J. Mater. Chem., 2012, vol. 22, no. 45, p. 23 755.

    Article  Google Scholar 

  43. Tu, Y.F., Huang, S.Y., Sang, J.P., et al., Mater. Res. Bull., 2010, vol. 45, no. 2, p. 224.

    Article  Google Scholar 

  44. Grinberg, V.A., Emets, V.V, Maiorova, N.A, et al., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 1, p. 51.

    Article  Google Scholar 

  45. Baifu Xin, Liqiang Jing, Zhiyu Ren, et al., J. Phys. Chem. B, 2005, vol. 109, p. 2805.

    Article  Google Scholar 

  46. Sajjad, S., Leghari, S.A.K., Chen, F., et al., Chem. - Eur. J., 2010, vol. 16, no. 46, p. 13 795.

    Article  Google Scholar 

  47. Andronic, L., Enesca, A., Vladuta, C., and Duta, A., Chem. Eng. J., 2009, vol. 152, p. 64.

    Article  Google Scholar 

  48. Hajjaji, A., Atyaoui, A., Trabelsi, K., et al., Am. J. Anal. Chem., 2014, vol. 5, no. 8, p. 473.

    Article  Google Scholar 

  49. Hoang, S., Berglund, S.P., Hahn, N.T., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 3659.

    Article  Google Scholar 

  50. Hoang, S., Guo, S.W., Hahn, N.T., et al., Nano Lett., 2011, vol. 12, p. 26.

    Article  Google Scholar 

  51. Wang, G.M., Wang, H.Y., Ling, Y.C., et al., Nano Lett., 2011, vol. 11, p. 3026.

    Article  Google Scholar 

  52. Maksimov, Yu.V., Suzdalev, I.P., Tsodikov, M.V., et al., J. Mol. Catal. A: Chem., 1996, vol. 105, no. 3, p. 167.

    Article  Google Scholar 

  53. Kriventsov, V.V., Kochubey, D.I., Tsodikov, M.V., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vol. 407, nos. 1–2, p. 331.

    Google Scholar 

  54. Jiang, D., Zhao, H., Zhang, S., et al., J. Phys. Chem. B, 2003, vol. 107, no. 46, p. 12 774.

    Article  Google Scholar 

  55. Zhang, H., Zhao, H., Zhang, S., et al., ChemPhysChem, 2008, vol. 9, p. 117.

    Article  Google Scholar 

  56. Kim, D.H. and Anderson, M.A., J. Photochem. Photobiol., A, 1996, vol. 94, nos. 2–3, p. 221.

    Article  Google Scholar 

  57. Lana-Villarreal, T., Goґmez, R., Neumann-Spallart, M., et al., J. Phys. Chem. B, 2004, vol. 108, p. 15 172.

    Article  Google Scholar 

  58. Lana-Villarreal, T., Peґrez, J.M., and Goґmez, R., C. R. Chim., 2006, vol. 9, p. 806.

    Article  Google Scholar 

  59. Gong, X.-Q., Selloni, A., and Vittadini, A., J. Phys. Chem. B, 2006, vol. 110, p. 2804.

    Article  Google Scholar 

  60. Montoya, J.F., Peral, J., and Salvador, P., J. Phys. Chem. C, 2014, vol. 118, no. 26, p. 14 266.

    Article  Google Scholar 

  61. Montoya, J.F., Atitar, M.F., and Bahnemann, D.W., J. Phys. Chem. C, 2014, vol. 118, p. 14 276.

    Article  Google Scholar 

  62. Kim, D.H. and Anderson, M.A., Environ. Sci. Technol., 1994, vol. 28, no. 3, p. 479.

    Article  Google Scholar 

  63. Mitoraj, D., Beranek, R., and Kisch, H., Photochem. Photobiol. Sci., 2010, vol. 9, no. 1, p. 31.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Absorption spectra of nanosize films of titanium dioxide doped by bismuth were obtained using the equipment of Center for Collective Use of Physical Research Methods of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Funding

The work was supported by the Program of Fundamental Research of Presidium of Russian Academy of Sciences 1.8P “Fundamental Aspects of Chemistry of Carbon Energetics” and the State task for the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, theme no. 47.23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Grinberg.

Additional information

Translated by M. Ehrenburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinberg, V.A., Emets, V.V., Mayorova, N.A. et al. Photoelectrocatalytic Oxidation of Formic Acid in the Visible Spectral Region on Films of Nanocrystalline Titanium Oxide Doped by Bismuth. Prot Met Phys Chem Surf 55, 637–645 (2019). https://doi.org/10.1134/S2070205119040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119040051

Keywords:

Navigation