Skip to main content
Log in

Structural Phase State and Thermal Cyclic Stability of the Thermal Barrier Zr–Si–O Coatings Deposited on a Copper Substrate by the Microplasma Method

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this work, preparation of thermal barrier coatings based on zirconium oxide is shown. The phased treatment of the copper substrate is proposed in order to obtain a layered thermal barrier oxide coating on it. The sample surface is nanostructured, titanium is deposited layer-by-layer (by the vacuum-arc method) and then zirconium (by the magnetron method), and then zirconium is converted into zirconium dioxide by the microplasma method. The formed oxide-ceramic coatings contain elements from a solution, according to the results of elemental analysis, and zirconium dioxide in tetragonal and monoclinic modifications, according to the results of X-ray diffraction. A study of thermal cyclic stability was carried out. It is revealed that an increase in the time of microplasma treatment to a certain value has a positive effect on the thermal cyclic properties of the obtained layer material and it is able to sustain more than 90 cycles without serious damage to the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Trety’akov, Yu.D., Keramika - material budushchego (Ceramics – Future Material), Moscow: Znanie, 1987, p. 48.

  2. Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Nauka, 1993.

  3. Kanygina, O.N. and Pak, E.M., Vestn. Kirg. Nats. Univ., Ser. Estestv. Tekh. Nauki, 1996, no. 1 (2), pp. 53–56.

  4. Aviatsionnye materialy i tekhnologii. 80 let (Aviation Materials and Technologies. 80 Years), Kablov, E.N., Ed., Moscow: All-Russian Scientific Research Institute of Aviation Materials, 2012, p. 476.

    Google Scholar 

  5. Salakhutdinov, G.M., Razvitie metodov teplozashchity zhidkostnykh raketnykh dvigatelei (Development of Methods of Thermal Protection of Liquid Rocket Engines), Moscow: Nauka, 1984, p. 144.

  6. Lukin, E.S., Popova, N.A., and Zdvizhkova, N.I., Steklo Keram., 1993, nos. 9–10, pp. 25–29.

  7. Baranov, R.V., Proc. Youth Scientific Conference 22nd Gagarin Readings, Moscow, 1996, part 3, pp. 48.

  8. Ceramics and Society, Brook, R.J., Ed., Faenza: Techna, 1995, p. 158.

    Google Scholar 

  9. Panin, V.E., Koroteev, A.S., Sergeev, V.P., and Rizakhanov, R.N., Nauka Pervykh Ruk, 2011, no. 4, pp. 96–103.

  10. Panin, V.E., Sergeev, V.P., and Panin, A.V., Nanostrukturirovanie poverkhnostnykh sloev konstruktsionnykh materialov i nanesenie nanostrukturnykh pokrytii (Nano-Structuring of Surface Layers of Materials and Plating of Nano-Structural Coatings), Tomsk: Tomsk Polytechnic Univ., 2010, p. 254.

  11. Mamaev, A.I., Mamaeva, V.A., Borikov, V.N., and Dorofeeva, T.I., Formirovanie nanostrukturnykh nemetallicheskikh neorganicheskikh pokrytii putem lokalizatsii vysokoenergeticheskikh potokov na granitse razdela faz. Uchebnoe posobie (Formation of Nano-Structural Nonmetallic Inorganic Coverings by Localization of High-Energy Streams on Phase’s Border. Student’s Book), Tomsk: Tomsk Polytechnic Univ., 2010, p. 360.

  12. Appelfeld, A.V. and Suminov, I.V., Microarc Oxidation. The Course of Lectures for Foreign Students, Moscow: MATI–Russian State Technological University Named after K.E. Tsiolkovsky, 2006, p. 82.

  13. Dorofeeva, T.I. and Mamaeva, V.A., Fiz. Khim. Obrab. Mater., 2010, no. 2, pp. 18–25.

  14. Fedorischeva, M.V., Kalashnikov, M.P., Sergeev, V.P., and Neufeld, V.V., Bull. Rus. Acad. Sci.: Phys., 2014, vol. 78, no. 8, pp. 710–712.

    Google Scholar 

  15. Sergeev, V.P., Yanovskii, V.P., Paraev, Yu.N., Sergeev, O.V., Kozlov, D.V., and Zhuravlev, S.A., Fiz. Mezomekh., 2004, vol. 7, no. S1-2, pp. 333–336.

  16. Emel'yanova, E.Yu., Dorofeeva, T.I., Mamaev, A.I., Mamaeva, V.A., and Budnitskaya, Yu.Yu., Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, vol. 54, no. 10/2, pp. 132–138.

  17. Mamaev, A.I., Borikov, V.N., Mamaeva, V.A., and Dorofeeva, T.I., Prot. Met., 2005, vol. 41, no. 3, pp. 254–258.

    Article  Google Scholar 

  18. Dorofeeva, T.I., Mamaev, A.I., and Mamaeva, V.A., Perspekt. Mater., 2007, no. 5, pp. 48–52.

  19. Balkevich, V.L., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Stroiizdat, 1984, p. 189.

  20. Kalinovich, D.F., Kuznetsova, L.I., and Denisenko, E.T., Poroshk. Metall., 1987, no. 11, pp. 98–102.

Download references

FUNDING

The work was performed in the framework of the Program of Basic Scientific Research of the Russian Academy of Sciences for 2013–2020, direction III.23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Dorofeeva.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeeva, T.I., Gubaidullina, T.A., Gritsenko, B.P. et al. Structural Phase State and Thermal Cyclic Stability of the Thermal Barrier Zr–Si–O Coatings Deposited on a Copper Substrate by the Microplasma Method. Prot Met Phys Chem Surf 55, 695–699 (2019). https://doi.org/10.1134/S207020511904004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020511904004X

Keywords:

Navigation