Skip to main content
Log in

Calculation of the Surface Energy of Metals: Agreement of the Thermodynamic Vacancy Model with the First-Principles Theory

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The thermodynamic vacancy model (TVM) of surface energy (SE) leads to the formula of the linear dependence of the minimum SE value of the low-index fcc (111) and bcc (110) faces on half of the vacancy formation energy or the 1/6 part of the cohesive energy of metals. Comparison of the numerical values of SE calculated by the TVM method with those calculated by the DFT method for the same faces shows negative deviations of the latter (from 2 to 17%). Using the values of these deviations, the surface energy relaxation of metals was calculated with a maximum value for Au and Pt and a minimum value for Ag and Pd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Blakely, J.M., Introduction to the Properties of Crystal Surfaces, Oxford: Pergamon Press, 1973, p. 274.

    Google Scholar 

  2. Michaelides, A. and Scheffler, M., in Surface and Interface Science, Wandelt, K., Ed., John Wiley and Sons, 2012, vol. 1, p. 54.

    Google Scholar 

  3. Wojciechqwski, K.F., Surf. Sci., 1999, vol. 437, pp. 285–288.

    Article  Google Scholar 

  4. Vitos, L., Ruban, A.V., Skriver, H.L., and Kollar, J., Surf. Sci., 1998, vol. 441, p. 186.

    Article  Google Scholar 

  5. Medasani, B., Haranczyk, M., Canning, A., and Asta, M., Comput. Mater. Sci., 2015, vol. 101, p. 96.

    Article  Google Scholar 

  6. Gibbs, J.W., The Collected Works, vol. 1: Thermodynamics, New York: Longmans and Green, 1928, p. 434.

    Google Scholar 

  7. Andreev, Yu.Ya., Russ. J. Phys. Chem. A, 1998, vol. 72, no. 3, pp. 447–451.

    Google Scholar 

  8. Andreev, Yu.Ya., Electrochim. Acta, 1998, vol. 43, p. 2627.

    Article  Google Scholar 

  9. Andreev, Yu.Ya., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 1, pp. 42–51.

    Article  Google Scholar 

  10. Andreev, Yu.Ya. and Kiselev, D.A., Philos. Mag., 2013, vol. 93, pp. 2401–2412.

    Article  Google Scholar 

  11. Andreev, Yu.Ya., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, p. 991.

  12. Overbury, S.H., Bertrand, P.A., and Somorjai, G.A., Chem. Rev., 1975, vol. 75, no. 5, p. 547.

    Article  Google Scholar 

  13. Korzhavyi, P.A., Abrikosov, I.A., Johansson, B., Ruban, A.V., and Skriver, H.L., Phys. Rev. B, 1999, vol. 59, p. 11693.

    Article  Google Scholar 

  14. Soderlind, P., Yang, L.H., Moriarty, J.A., and Wills, J.M., Phys. Rev. B, 2000, vol. 61, p. 2579.

    Article  Google Scholar 

  15. Gottstein, G., Physical Foundations of Materials Science, Berlin, Heidelberg: Springer, 2004.

    Book  Google Scholar 

  16. Dasileva, J.L.F., Stampfl, C., and Scheffler, M., Surf. Sci., 2006, vol. 600, p. 703.

    Article  Google Scholar 

  17. Methfessel, M., Hennig, D., and Scheffler, M., Phys. Rev. B, 1992, vol. 46, p. 4816.

    Article  Google Scholar 

  18. Kraftmakher, Ya., Phys. Rep., 1998, vol. 299, pp. 79–188.

    Article  Google Scholar 

  19. Damask, A.C. and Dienes, G.J., Point Defects in Metals, New York: Gordon and Breach, 1963, p. 314.

    Google Scholar 

  20. Gorecki, T., Z. Metallkd., 1974, vol. 65, pp. 426–431.

    Google Scholar 

  21. Stolze, P., J. Phys.: Condens. Matter, 1994, vol. 6, p. 9495.

    Google Scholar 

  22. Doyama, M. and Koehler, J.S., Acta Metall., 1976, vol. 24, p. 871.

    Article  Google Scholar 

  23. Taylor, H.S., Proc. R. Soc. A, 1925, vol. 108, p. 105.

    Article  Google Scholar 

  24. Figuera, J., Prieto, J.E., Ocal, C., and Miranda, R., Solid State Commun., 1994, vol. 89, p. 815.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Andreev.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, Y.Y., Terent’ev, A.V. Calculation of the Surface Energy of Metals: Agreement of the Thermodynamic Vacancy Model with the First-Principles Theory. Prot Met Phys Chem Surf 55, 621–626 (2019). https://doi.org/10.1134/S2070205119040026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119040026

Keywords:

Navigation