Skip to main content
Log in

An Instant, Green, Microwave Irradiated Process for the Preparation of Advanced, Hybrid, Nanoflower of Thorium Oxide and Thorium Oxalate Hydrate Useful for Broad Application Spectrum

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

We report a facile and reproducible method to synthesize advanced, homogenized, hybrid, nanoflower of thorium oxide and thorium oxalate hydrate material via a novel, green, microwave irradiated chemical process. The Nanoflowers can be successfully synthesized using thorium nitrate penta hydrate as the metal source along with two different capping agents, cetyltrimethyl ammonium bromide and 4-amino-1H-pyrimidine-2-one respectively in the ubiquity of microwave irradiation having power source 230V at the temperature of 45°C for 15 minutes to get the desired product. The synthesized material was characterized by various complementary techniques namely XRD, FTIR, PL, TGA/DSC curve, SEM and EDX. The 3D nanoflowers structure, so formed, resembles a natural Peony flower. The applications of synthesized material lies in the area of making thorium metal, densified thorium oxide, carbide and nitride, anhydrous thorium complexes and thorium boron silicates glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lee, S.W., Cheon, S.A., Kim, M.I., and Park, T.J., J. Nanobiotechnol., 2015, vol. 13, p. 5.

    Article  Google Scholar 

  2. Ge, J., Lei, J., and Zare, R.N., Nat. Nanotechnol., 2012, vol. 7, p. 428.

    Article  Google Scholar 

  3. Kharisov, B.I., Recent Pat. Nanotechnol., 2008, vol. 2, p. 190.

    Article  Google Scholar 

  4. Lim, B., Jiang, M., Camargo, P.H., Cho, E.C., Tao, J., and Lu, X., Science, 2009, vol. 324, p. 130.

    Article  Google Scholar 

  5. Ning, J., Dai, Q., Jiang, T., Men, K., Liu, D., Xiao, N., Chenyuan, Li, Li, D., Liu, B., Zou, B., Zou, G., and Yu, W.W., Langmuir, 2009, vol. 25, p. 1818.

    Article  Google Scholar 

  6. Ge, J., Lei, J., and Zare, R.N., Nat. Nanotechnol., 2012, vol. 7, p. 42.

    Article  Google Scholar 

  7. Sun, Z., Kim, J.M., Zhao, Y., Bijarbooneh, F., Malgras, V., Lee, Y., Kang, Y.M., and Dou, S.X., J. Am. Chem. Soc., 2011, vol. 193, p. 133.

    Google Scholar 

  8. Mohanty, A., Garg, N., Jin, R., Angew. Chem., Int. Ed., 2010, vol. 49, p. 4962.

    Article  Google Scholar 

  9. Tang, Y., Rui, X., Zhang, Y., Lim, T.M., Dong, Z., Hng, H.H., Chen, X., Yan, Q., and Chen, Z., J. Mater. Chem. A, 2013, vol. 1, p. 82

    Article  Google Scholar 

  10. http://en.wikipedia.org/wiki/India%27s_three-stage_nuclear_power_programme.

  11. Ananthasivan, K., Balakrishnan, S., Anthonysamy, S., Divakar, R., Mohandas, E., and Ganesan, V., J. Nucl. Mater., 2013, vol. 434, p. 223.

    Article  Google Scholar 

  12. Curran, G., Sevestre, Y., Rattray, W., Allen, P., and Czerwinski, K.R., J. Nucl. Mater., 2003, vol. 41, p. 323.

    Google Scholar 

  13. Niranjan, R.S., Londhe, M.S., Mandale, A.B., et al., Sens. Actuators, B, 2002, vol. 87, 406.

    Article  Google Scholar 

  14. Ho, S.W., J. Catal., 1998, vol. 175, p. 139.

    Article  Google Scholar 

  15. Ge, F.Z., Ye, Z.Z., Wang, F.Z., Zhang, Y.P., and Ding, B.J., Mater. Lett., 2003, vol. 57, p. 2776.

    Article  Google Scholar 

  16. Zhang, H., Chen, X.Y., Yang, Z.M., and Ding, B.J., Mater. Lett., 1999, vol. 38, p. 401.

    Article  Google Scholar 

  17. Moeini, M., Malekzadeh, A., Ahmadi, S.J., and Hosseinpour, M.D.F., Mater. Lett., 2012, vol. 81, p. 99.

    Article  Google Scholar 

  18. Wang, L., Zhao, R., Wang, X.W., Mei, L., Yuan, L., Wang, S., Chai, Z., and Shi, W., CrystEngComm, 2014, vol. 16, p. 10469.

    Article  Google Scholar 

  19. Batuk, O.N., Szabo, D.V., Denecke, M.A., Vitova, T., and Kalmykov, S.V., Radiochim. Acta, 2013, vol. 101, no. 4, p. 233.

    Article  Google Scholar 

  20. Verma, S. and Amritphale, S.S., J. Radioanal. Nucl. Chem., 2016, vol. 307, p. 669.

    Article  Google Scholar 

  21. Bajia, S., Sharma, R., and Bajia, B., E-J. Chem., 2009, vol. 6, p. 120.

    Article  Google Scholar 

  22. Verma, S., Amritphale, S.S., and Das, S., J. Chem. Res., 2016, vol. 40, p. 323.

    Article  Google Scholar 

  23. Zhang, P., Yin, S., and Satp, T., Appl. Catal., B, 2009, vol. 89, p. 118.

    Article  Google Scholar 

  24. Katsuyuki, O., Jin, O., and Yoshiharu, T., US Patent 4364859A, 1982.

  25. Balakrishna, P., Nat. Sci., 2015, vol. 7, pp. 10–17.

    Google Scholar 

  26. Simpson, M.P. and Morrell, M.S., Electron. Power, 1982, vol. 28, pp. 612–613.

    Article  Google Scholar 

  27. Sharma, P., Dutta, R., Liu, K., Aninash, R.P., and Pandey, A.C., Mater. Lett., 2010, vol. 64, p. 1183.

    Article  Google Scholar 

  28. Chen, W., Mai, L., Qi, Y., and Dai, Y., J. Phys. Chem. Solids, 2006, vol. 67, p. 896.

    Article  Google Scholar 

  29. Ali, M.E. and Lamprecht, A., J. I. J. Pham., 2003, vol. 45, p. 6135.

    Google Scholar 

  30. Powder Diffraction File, Alphabetical Index Inorganic Phases, Swarthmore, PA: JCPDS International Centre for Diffraction Data, 1984.

  31. Hussein, G.A.M. and Ismail, H.M., Colloids Surf., A, 1995, vol. 99, p. 129.

    Article  Google Scholar 

  32. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Hoboken, NJ: John Wiley and Sons, 2009, pp. 766–773.

    Google Scholar 

  33. Socrates, G., Infrared and Raman Characteristic Group Frequencies: Table and Charts, New York: John Wiley and Sons, 2004, p. 287.

    Google Scholar 

  34. Lin, Z.W., Kuang, Q., Lian, W., Jiang, Z.Y., Xie, Z.X., Huang, R.B., and Zheng, L.S., J. Phys. Chem. B, 2006, vol. 110, p. 2307.

    Google Scholar 

  35. Beckett, R. and Winfield, M.E., Aust. J. Sci. Res., 1951, vol. 4, p. 644.

    Google Scholar 

  36. Aybers, M.T., J. Nucl. Mater., 1998, vol. 252, p. 28.

    Article  Google Scholar 

  37. Walther, C., Rothe, J., Schimmelpfennig, B., and Fuss, M., Dalton Trans., 2012, vol. 41, p. 10941.

    Article  Google Scholar 

  38. Moeini, M., Malekzadeh, A., Ahmadi, S.J., and Hosseinpour, M., Mater. Lett., 2012, vol. 81, p. 99.

    Article  Google Scholar 

  39. Tiwari, R.N. and Sinha, D.N., J. Indian Chem., 1980, vol. 14, p. 25.

    Google Scholar 

  40. Jonke, A.A., Petkus, E.J., Loeding, J.W., and Lawroski, S., Nucl. Sci. Eng., 1957, vol. 2, p. 303.

    Article  Google Scholar 

  41. Zagorski, Z.P. and Gluszewski, W., Nukleonika, 2010, vol. 55, p. 407.

    Google Scholar 

  42. Jaqueline, Y. and Thibault, L.K., US Patent 8431689B2, 2010.

Download references

ACKNOWLEDGMENTS

Authors are grateful to Director CSIR-AMPRI Bhopal for providing necessary institutional facilities and encouragement. Thanks are also due to Dr. D.P. Mondal, Mr. Mohd. Shafique and Mr. Deepak Kashyap of CSIR- AMPRI for analysis of samples on SEM, EDX and providing data of thermal analysis of samples. Dr Neelesh Jain, SIRT, Bhopal and MANIT, Bhopal for providing facilities for IR and PL visible spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Verma.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarika Verma, Mishra, D., Sanghi, S.K. et al. An Instant, Green, Microwave Irradiated Process for the Preparation of Advanced, Hybrid, Nanoflower of Thorium Oxide and Thorium Oxalate Hydrate Useful for Broad Application Spectrum. Prot Met Phys Chem Surf 55, 65–71 (2019). https://doi.org/10.1134/S2070205119010246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010246

Keywords:

Navigation