Skip to main content
Log in

Investigation of Aqueous Cr(VI) Adsorption Characteristics of Orange Peels Powder

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This study deals with the application of orange peels powder (OPP) for Cr(VI) adsorption from aqueous solutions at room temperature. The OPP was prepared and then characterized by FTIR and SEM for various functional groups and surface morphology, respectively. The powder surface contains different functional groups necessary for adsorption. The powder was of highly porous nature which is a prerequisite for sorption. The variation of adsorption efficiency of the adsorbent with different influencing parameters like pH of solution, contact time, adsorbate concentration and adsorbent dose was studied. The maximum adsorption was achieved at interaction time of 50 min and pH 7 of solution. The data obtained at equilibrium best fitted into Langmuir adsorption isotherm as compared to Freundlich adsorption isotherm. The maximum value of monolayer adsorption capacity was 4.69 mg g–1. The Langmuir separation factor “r” was from 0.193 to 0.0383 for all the initial concentrations suggested favorable adsorption of Cr(VI) on OPP. The adsorption process was found to occur via pseudo-second order equation as revealed from kinetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kurniawan, T.A., Chan, G.Y.S., Lo, W., and Babel, S., Sci. Total Environ., 2006, vol. 366, p. 409.

    Article  Google Scholar 

  2. Michalak, I., Wołowiec, P., and Chojnacka, K., Environ. Monit. Assess., 2014, vol. 186, p. 2259.

    Article  Google Scholar 

  3. Baruthio, F., Biol. Trace Elem. Res., 1992, vol. 32, p. 145.

    Article  Google Scholar 

  4. Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., and Groneberg, D.A., J. Occup. Med. Toxicol., 2006, vol. 1, p. 22.

    Article  Google Scholar 

  5. Fendorf, S., Michael, H.A., and Geen, A.V., Science, 2010, vol. 328, p. 1123.

    Article  Google Scholar 

  6. McCarty, K.M., Hanh, H.T., and Kim, K.W., Rev. Environ. Health, 2011, vol. 26, p. 71.

    Article  Google Scholar 

  7. He, B., Yun, Z.J., Shi, J.B., and Jiang, G.B., Chin. Sci. Bull., 2013, vol. 58, p. 134.

    Article  Google Scholar 

  8. Florea, A.M. and Busselberg, D., Biometals, 2006, vol. 19, p. 419.

    Article  Google Scholar 

  9. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., and Beeregowda, K.N., Interdiscip. Toxicol., 2014, vol. 7, p. 60.

    Article  Google Scholar 

  10. Solenkova, N.V., Newman, J.D., Berger, J.S., Thurston, G., Hochman, J.S., and Lamas, G.A., Am. Heart J., 2014, vol. 168, p. 812.

    Article  Google Scholar 

  11. Vaishaly, A.G., Mathew, B.B., and Krishnamurthy, N.B., Int. J. Adv. Sci. Res., 2015, vol. 1, p. 60.

    Article  Google Scholar 

  12. Sha, L., Xue-yi, G., Chuan, F.N., and Hua, T.Q., Trans. Nonferrous Met. Soc. China, 2010, vol. 20, p. 187.

    Article  Google Scholar 

  13. Aman, T., Kazi, A.A., Sabri, M.U., Bano, Q., Sabri, M.U., and Bano, Q., Colloids Surf., B, 2008, vol. 63, p. 116.

    Article  Google Scholar 

  14. Liang, S., Guo, X., Feng, N., and Tian, F.Q., J. Hazard. Mater., 2009, vol. 170, p. 425.

    Article  Google Scholar 

  15. Volesky, B., Hydrometallurgy, 2001, vol. 59, p. 203.

    Article  Google Scholar 

  16. Argun, M.E., Dursun, S., Ozdemir, C., and Karatas, M., J. Hazard. Mater., 2007, vol. 141, p. 77.

    Article  Google Scholar 

  17. Demirbas, E., Kobya, M., Senturk, E., and Ozkan, T., Water SA, 2004, vol. 30, p. 533.

    Article  Google Scholar 

  18. Huang, M.R., Peng, Q.Y., and Li, X.G., Chem. Eur. J., 2006, vol. 12, p. 4341.

    Article  Google Scholar 

  19. Mehrasbi, M.R., Farahmandkia, Z., Taghibeigloo, B., and Taromi, A., Water, Air, Soil Pollut., 2009, vol. 199, p. 343.

    Article  Google Scholar 

  20. Park, H.J., Jeong, S.W., Yang, J.K., Kim, B.G., and Lee, S.M., J. Environ. Sci., 2007, vol. 19, p. 1436.

    Article  Google Scholar 

  21. Biswas, B.K., Inoue, K., Ghimire, K.N., Ohta, S., Harada, H., Ohto, K., and Kawakita, H., J. Colloid Interface Sci., 2007, vol. 312, p. 214.

    Article  Google Scholar 

  22. Marín, A.B.P., Zapata, V.M., Ortuno, J.F., Aguilar, M., Saez, J., and Llorens, M., J. Hazard. Mater., 2007, vol. 139, p. 122.

    Article  Google Scholar 

  23. Lasheen, M.R., Ammar, N.S., and Ibrahim, H.S., Solid State Sci., 2012, vol. 14, p. 202.

    Article  Google Scholar 

  24. Tran, H.N., Youb, S.J., and Chao, H.P., J. Environ. Chem. Eng., 2016, vol. 4, p. 2671.

    Article  Google Scholar 

  25. Annadural, G., Juang, R.S., and Lee, D.J., Water Sci. Technol., 2003, vol. 47, p. 185.

    Article  Google Scholar 

  26. Crini, G., Peindy, H.N., Gimbert, F., and Robert, C., Sep. Purif. Technol., 2007, vol. 53, p. 97.

    Article  Google Scholar 

  27. Lai, Y.L., Thirumavalavan, M., and Lee, J.F., Toxicol. Environ. Chem., 2010, vol. 92, p. 697.

    Article  Google Scholar 

  28. Zapata, B., Balmased, J., Fregoso-Israel, E., and Torres-Garc, E., J. Therm. Anal. Calorim., 2009, vol. 98, p. 309.

    Article  Google Scholar 

  29. Kalidhasan, S., Gupta, P.A., Cholleti, V.R., Kumar, A.S.K., Rajesh, V., and Rajesh, N., J. Colloid Interface Sci., 2012, vol. 372, p. 88.

    Article  Google Scholar 

  30. Dana, E., Microporous Mesoporous Mater., 2017, vol. 247, p. 145.

    Article  Google Scholar 

  31. Munusamy, T., Ling, L.Y., Chu, L.L., and Fwu, L.J., J. Chem. Eng. Data, 2010, vol. 55, p. 1186.

    Article  Google Scholar 

  32. Goyal, M., Rattan, V.K., Aggarwal, D., and Bansal, R.C., Colloids Surf., A, 2001, vol. 190, p. 229.

    Article  Google Scholar 

  33. Reddy, D.H.K., Lee, S.M., and Seshaiah, K., Environ. Eng. Res., 2012, vol. 17, p. 125.

    Article  Google Scholar 

  34. Nemr, A.E., Chem. Ecol., 2007, vol. 23, p. 409.

    Article  Google Scholar 

  35. Gaya, U.I., Otene, E.L., and Abdullah, A.H., SpringerPlus, 2015, vol. 4, p. 458.

    Article  Google Scholar 

  36. Gupta, V.K., Mittal, A., Malviya, A., and Mittal, J., J. Colloid Interface Sci., 2009, vol. 335, p. 24.

    Article  Google Scholar 

  37. Sen, T.K., Mohammod, M., Maitra, S., Dutta, B.K., Mohammod, M., Maitra, S., and Dutta, B.K., Clean: Soil, Air, Water, 2010, vol. 38, p. 850.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Malook.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan Malook, Ihsan-ul-Haque Investigation of Aqueous Cr(VI) Adsorption Characteristics of Orange Peels Powder. Prot Met Phys Chem Surf 55, 34–40 (2019). https://doi.org/10.1134/S2070205119010155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010155

Keywords:

Navigation