Skip to main content
Log in

The Electrolytic Ionic Strength Effect on Corrosion Resistance and Crystallinity of Plasma Electrolytic Oxidation (PEO) Coating Developed on Ti6Al4V

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The aim of this paper was to investigate the formation of an amorphous phase in the coating structure due to reduction in porosity and improvement in corrosion resistance of Ti6Al4V alloy during PEO process. The effect of crystallization on the electrochemical corrosion behavior and surface property of Ti6Al4V coating fabricated by plasma electrolytic oxidation (PEO) technique, was investigated in 5 wt %HCl solution. The coating compositions and electrochemical behaviors were examined by X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS) and polarization tests. The results showed that an increase in the ionic strength of electrolyte had a direct effect on the crystal size, the lattice strain and corrosion resistance. An increase in lattice strain due to Ti–O–Si led to a reduction in coating adhesion and corrosion resistance. A significant effect in phase transformation for Titania in the PEO process was not only led to an increase in polarization resistance but also reduced the number and size of porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Zhang, R., Qiao, L., Qu, B., Zhang, S., Chanmg W., and Xiang, J., Mater. Lett., 2015, vol. 153, p. 77.

    Article  Google Scholar 

  2. Rehim, S., Hassan, H., and Amin, M., Corros. Sci., 2004, vol. 46, p. 1921.

    Article  Google Scholar 

  3. Cabrini, M., Lorenzi, S., and Pastore, T., Electrochim. Acta, 2014, vol. 124, p. 156.

    Article  Google Scholar 

  4. Wang, H. and Pilon, L., Electrochim. Acta, 2012, vol. 64, p. 130.

    Article  Google Scholar 

  5. Trdan, U. and Grum, J., Corros. Sci., 2012, vol. 59, p. 324.

    Article  Google Scholar 

  6. Liu, Y., Xia, X., and Liu, H., J. Power Sources, 2004, vol. 130, p. 299.

    Article  Google Scholar 

  7. Zhou, L., Yan, Sh., Tian, B., Zhang, J., and Anpo, M., Mater. Lett., 2006, vol. 60, p. 396.

    Article  Google Scholar 

  8. Shi, X., Wang, Q., Wang, F., and Ge, S., Min. Sci. Technol., 2009, vol. 19, p. 220.

    Google Scholar 

  9. Cimenoglu, H., Gunyuz, M., Kose, G., Baydogan, M., Uğurlu, F., and Sener, C., Mater. Charact., 2011, vol. 62, p. 304.

    Article  Google Scholar 

  10. Wheeler, J., Collier, C., Paillard, J., and Curran, J., Surf. Coat. Technol., 2010, vol. 204, p. 3399.

    Article  Google Scholar 

  11. Teng, H., Yang, C., Lin, J., Huang, Y., and Lu, F., Electrochim. Acta, 2016, vol. 193, p. 216.

    Article  Google Scholar 

  12. Mumjitha, M., and Raj, V., J. Mech. Behav. Biomed. Mater., 2015, vol. 46, p. 205.

    Article  Google Scholar 

  13. Durdu, S. and Usta, M., Ceram. Int., 2014, vol. 40, p. 3627.

    Article  Google Scholar 

  14. Çelik, O., Appl. Surf. Sci., 2013, vol. 274, p. 334.

    Article  Google Scholar 

  15. Arslan, E., Totik, Y., Demirci, E., and Efeoglu, I., Surf. Coat. Technol., 2013, vol. 214, p. 1.

    Article  Google Scholar 

  16. Vangolu, Y., Alsaran, A., and Yildirim, O., Wear, 2011, vol. 271, p. 2322.

    Article  Google Scholar 

  17. Blau, P. and Budinski, K., Wear, 1999, vols. 225–229, p. 1159.

    Article  Google Scholar 

  18. Zhang, P., Zhang, Z., Li, W., and Zhu, M., Appl. Surf. Sci., 2013, vol. 268, p. 381.

    Article  Google Scholar 

  19. Kim, D., Kim, M., Kim, H., Koh, Y., Kim, H., and Jang, J., Acta Biomater., 2009, vol. 5, p. 2196.

    Article  Google Scholar 

  20. Yao, X., Zhang, X., Wu, H., Tian, L., Ma, Y., and Tang, B., Appl. Surf. Sci., 2014, vol. 292, p. 944.

    Article  Google Scholar 

  21. Nie, X., Leyland, A., and Matthews, A., Surf. Coat. Technol., 2000, vol. 125, p. 407.

    Article  Google Scholar 

  22. Mingo, B., Arrabal, R., Mohedano, M., Llamazares, Y., Matykina, E., and Yerokhin, A., Appl. Surf. Sci., 2018, vol. 433, p. 653.

    Article  Google Scholar 

  23. Malinovschi, V., Marin, A., Mihalache, M., and Iosub, I., Surf. Coat. Technol., 2016, vol. 296, p. 96.

    Article  Google Scholar 

  24. Öhman, L., Lövgren, L., Hedlund, T., and Sjöberg, S., Interface Sci. Technol., 2006, vol. 11, p. 1.

    Article  Google Scholar 

  25. Rastogi, P., Sarkar, S., and Mandler, D., Appl. Mater. Today, 2017, vol. 8, p. 44.

    Article  Google Scholar 

  26. Eslamipour, F. and Hejazi, P., J. Mol. Catal. B: Enzym., 2015, vol. 119, p. 1.

    Article  Google Scholar 

  27. Sun, T., Xue, N., Liu, C., Wang, C., and He, J., Appl. Surf. Sci., 2015, vol. 356, p. 599.

    Article  Google Scholar 

  28. Stem, N., Souza, M., Faria, D., and Filho, S., Thin Solid Films, 2014, vol. 558, p. 67.

    Article  Google Scholar 

  29. Sun, Y., Zhang, Z., Liu, L., and Wang, X., J. Non-Cryst. Solids, 2015, vol. 420, p. 26.

    Article  Google Scholar 

  30. Oliveira, C., Gonçalves, L., Almeida, B., Tavares, C., Carvalho, S., and Vaz, F., Surf. Coat. Technol., 2008, vol. 203, p. 490.

    Article  Google Scholar 

  31. Tian, X., Chen, Q., Song, L., Wang, Y., and Li, H., Mater. Lett., 2007, vol. 61, p. 4432.

    Article  Google Scholar 

  32. Jeong, S., Kim, J., Kim, B., Shim, S., and Lee, B., Vacuum, 2004, vol. 76, p. 507.

    Article  Google Scholar 

  33. Wang, S., Guo, X., Xie, Y., Liu, L., Yang, H., and Zhu, R., Surf. Coat. Technol., 2012, vol. 213, p. 192.

    Article  Google Scholar 

  34. Di, S., Guo, Y., Lv, H., Yu, J., and Li, Z., Ceram. Int., 2015, vol. 41, p. 6178.

    Article  Google Scholar 

  35. Venkateswarlu, K., Bose, A., and Rameshbabu, N., Phys. B (Amsterdam, Neth.), 2010, vol. 405, p. 4256.

    Google Scholar 

  36. Malekmohammadi, F., Rouhaghdam, A.S., and Shahrabi, T., J. Non-Cryst. Solids, 2011, vol. 357, p. 1141.

    Article  Google Scholar 

  37. Gawel, L., Nieuzyla, L., Nawrat, G., Darowicki, K., and Slepski, P., J. Alloys Compd., 2017, vol. 722, p. 406.

    Article  Google Scholar 

  38. Zhu, L., Petrova, R.S., Gashinski, J.P., and Yang, Z., Surf. Coat. Technol., 2017, vol. 325, p. 22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Razaghian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekmohammadi, F., Razaghian, A. & Dehghanian, C. The Electrolytic Ionic Strength Effect on Corrosion Resistance and Crystallinity of Plasma Electrolytic Oxidation (PEO) Coating Developed on Ti6Al4V. Prot Met Phys Chem Surf 55, 115–126 (2019). https://doi.org/10.1134/S2070205119010143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010143

Keywords:

Navigation