Skip to main content
Log in

Catalytic Properties of K2Ti2O5 + K2Ti4O9/TiO2/TiO2 + SiO2/Ti Composites and Their Resistance to Environment Effects during the Process of Carbon Black Oxidation

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

A catalyst for oxidation of carbon black based on potassium dititanate has been synthesized. The catalyst has been fabricated by impregnation of oxidized titanium surface additionally modified with a sublayer of anatase nanoparticles by potassium hydroxide. It has been shown that the synthesized composites exhibit high capacity for oxidation of diesel carbon black, while the applied catalytic layer is characterized by resistance to adhesive and cohesive destruction along with a satisfactory resistance to thermal shock and impact of catalyst poisons. The temperatures of initiation and termination of the catalytic process are in the range 340–550°С and comply with the temperature ranges of the practically applied catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Krylova, A.V. and Mikhailichenko, A.I., Khim. Tekhnol., 2003, no. 2, p. 13.

  2. Krishna, K., Bueno-López, A., Makkee, M., and Moulijn, J.A., Appl. Catal., B, 2007, vol. 75, p. 201.

    Article  Google Scholar 

  3. Guido, S., Serra, V., Badini, C., and Specchia, V., Ind. Eng. Chem. Res., 1997, vol. 36, no. 6, p. 2051.

    Article  Google Scholar 

  4. Sui, L., Yu, L., and Zhang, Y., Energy Fuels, 2006, vol. 20, p. 1392.

    Article  Google Scholar 

  5. Doorn, J., Varloud, J., Moriaudeau, P., and Perrichon, V., Appl. Catal., B, 1992, vol. 1, p. 117.

    Article  Google Scholar 

  6. Banus, E.D., Milt, V.G., Miro, E.E., and Ulla, M.A., Appl. Catal., A, 2010, vol. 379, p. 95.

  7. Turakulova, A.O., Zaletova, N.V., and Lunin, V.V., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 8, p. 1309.

    Article  Google Scholar 

  8. Gao, Y., Wu, X., and Liu, S., RSC Adv., 2016, vol. 6, p. 57033.

    Article  Google Scholar 

  9. Flouty, R., Abi-Aad, E., Siffert, S., and Aboukaıs̈, A., Appl. Catal., B, 2003, vol. 46, p. 145.

    Article  Google Scholar 

  10. Gross, M.S., Ulla, M.A., and Querini, C.A., Appl. Catal., A, 2009, vol. 360, p. 81.

  11. Zhang, Z., Zhang, Y., Wang, Z., and Gao, X., J. Catal., 2010, vol. 271, p. 12.

    Article  Google Scholar 

  12. Gong, C., Song, Ch., Pei, Y., et al., Ind. Eng. Chem. Res., 2008, vol. 47, p. 4374.

    Article  Google Scholar 

  13. Peng, X., Lin, H., Shangguan, W., and Huang, Z., Ind. Eng. Chem. Res., 2006, vol. 45, p. 8822.

    Article  Google Scholar 

  14. An, H., Kilroy, C., and McGinn, P.J., Catal. Today, 2004, vol. 98, p. 423.

    Article  Google Scholar 

  15. Meng, X., Wang, Q., et al., Kinet. Catal., 2012, vol. 53, no. 5, p. 560.

    Article  Google Scholar 

  16. Wang, Q., Chung, J.-Sh., and Guo, Z., Ind. Eng. Chem. Res., 2011, vol. 50, p. 8384.

    Article  Google Scholar 

  17. Meng, X., Gao, Y., et al., China Pet. Process. Petrochem. Technol., 2012, vol. 14, no. 2, p. 50.

    Google Scholar 

  18. Kondrikov, N.B., Rudnev, V.S., Vasil’eva, M.S., et al., Khim. Interesakh Ustoich. Razvit., 2005, vol. 13, no. 6, p. 851.

    Google Scholar 

  19. Vasil'eva, M.S., Rudnev, V.S., Tyrina, L.M., et al., Russ. J. Appl. Chem., 2005, vol. 78, no. 11, p. 1859.

    Article  Google Scholar 

  20. Vasil'eva, M.S., Rudnev, V.S., Kondrikov, N.B., et al., Russ. J. Appl. Chem., 2004, vol. 77, no. 2, p. 218.

    Article  Google Scholar 

  21. Lukiyanchuk, I.V., Rudnev, V.S., and Tyrina, L.M., Surf. Coat. Technol., 2016, vol. 307, p. 1183.

    Article  Google Scholar 

  22. Karakurkchi, A., Sakhnenko, M., Ved, M., et al., East.-Eur. J. Enterp. Technol., 2017, vol. 5, no. 10 (89), p. 12.

  23. Lebukhova, N.V., Rudnev, V.S., Chigrin, P.G., et al., Surf. Coat. Technol., 2013, vol. 231, p. 144.

    Article  Google Scholar 

  24. Lebukhova, N.V., Rudnev, V.S., Kirichenko, E.A., et al., Surf. Coat. Technol., 2015, vol. 261, p. 344.

    Article  Google Scholar 

  25. Karpovich, N.F., Korol’kov, I.V., Makarevich, K.S., et al., Fundam. Probl. Sovrem. Tekhnol. Materialoved., 2012, vol. 9, no. 1, p. 34.

    Google Scholar 

  26. Gorokhovskii, A.V., RF Patent 2326051, 2008.

  27. Wang, Q., Guo, Z., and Chung, J.-Sh., Mater. Res. Bull., 2009, vol. 44, p. 1973.

    Article  Google Scholar 

  28. Rudnev, V.S., Malyshev, I.V., et al., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, p. 455.

    Article  Google Scholar 

  29. Vasilyeva, M.S., Rudnev, V.S., Wiedenmann, F., et al., Appl. Surf. Sci., 2011, vol. 258, p. 719.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The present study was partially supported by the “Far East” Program of Basic Research (project no. 18-3-034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. G. Chigrin or V. S. Rudnev.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chigrin, P.G., Kirichenko, E.A., Rudnev, V.S. et al. Catalytic Properties of K2Ti2O5 + K2Ti4O9/TiO2/TiO2 + SiO2/Ti Composites and Their Resistance to Environment Effects during the Process of Carbon Black Oxidation. Prot Met Phys Chem Surf 55, 109–114 (2019). https://doi.org/10.1134/S2070205119010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010088

Keywords:

Navigation