Skip to main content
Log in

Methane Adsorption on the Metal–Organic Framework Structure Al-BTC

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Adsorption of natural gas (methane) on the synthesized metal–organic framework (MOF) Al-BTC with specific surface area SBET = 1422 m2/g was studied at pressures up to 40 MPa and temperatures of 303, 313, 323, and 333 K. The maximum adsorption of methane on Al-BTC reaches 10.36 mmol/g at 303 K and 40 MPa, and the initial heat of adsorption is ~14 kJ/mol. The amount of methane accumulated in a system with Al-BTC attains a value of 120–130 m3(NTP)/m3 in a range of pressures from 3.5 to 10.0 MPa, which is the most relevant for methane accumulation. The volumes of methane stored in the systems with Al-BTC and without an adsorbent differ by a factor of about 2 at 3.5 MPa, there is almost no distinction between these options of methane storage at 7.0 and 20.0 MPa, and the amount of gas in the system without an adsorbent exceeds by 25% that in Al-BTC. The pressure range from 3.5 to 6.0 MPa is most efficient for the methane adsorption accumulation in the MOF structure Al-BTC. The absolute efficiency of methane adsorption accumulation increases with lowering of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. m3(NTP)/m3 is the volume of methane at atmospheric pressure (101 325 Pa) and 293.15 K in 1 m3 of storage system.

REFERENCES

  1. Solar, C., Blanco, A.G., Vallone, A., and Sapag, K., in Natural Gas, Potocnik, P., Ed., InTech, 2010, pp. 205–244.

    Google Scholar 

  2. Vasil’ev, Yu.N., Gritsenko, A.I., and Chirikov, K.Yu., Gazozapravka transporta (Gas-Filling of Transport), Moscow: Nedra, 1995.

  3. Yevi, G.Y. and Rogers, R.E., J. Energy Resour. Technol., 1996, vol. 118, pp. 209–213.

    Article  Google Scholar 

  4. Koh, C.A., Chem. Soc. Rev., 2002, vol. 31, no. 3, pp. 157–167.

    Article  Google Scholar 

  5. Wang, L., Gardeler, H., and Gmehling, J., Sep. Purif. Technol., 1997, vol. 12, pp. 35–41.

    Article  Google Scholar 

  6. Dubinin, M.M., Prog. Surf. Membr. Sci., 1975, vol. 9, pp. 1–70.

    Article  Google Scholar 

  7. Furukawa, H., Cordova, K.E., O’Keeffe, M., and Yaghi, O.M., Science, 2013, vol. 341, p. 974.

    Article  Google Scholar 

  8. MacGillivray, L.R., Metal–Organic Frameworks: Design and Application, Wiley, 2010.

    Book  Google Scholar 

  9. Zhang, Y., Fang, D., Liu, R., Zhao, S., Xiao, X., Wang, C., Cao, Y., and Xu, W., Dyes Pigm., 2016, vol. 130, p. 129.

    Article  Google Scholar 

  10. Corma, A., Garcıá, H., and Llabrés i Xamena, F.X., Chem. Rev., 2010, vol. 110, pp. 4606–4655.

    Article  Google Scholar 

  11. Batrakova, M.K., Solovtsova, O.V., Fomkin, A.A., Tsivadze, A.Yu., Shkolin, A.V., Shiryaev, A.A., and Vysotskii, V.V., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 6, pp. 961–966.

    Article  Google Scholar 

  12. Aksyutin, O.E., Ishkov, A.G., Romanov, K.V., Teterevlev, R.V., Fomkin, A.A., Shkolin, A.V., Pribylov, A.A., Men’shchikov, I.E., Müller, U., Arnold, L., and Piontek, M., Nauka Tekh. Gazov. Prom-sti, 2016, vol. 68, no. 4, p. 67.

    Google Scholar 

  13. Sychev, V.V., Vasserman, A.A., Zagoruchenko, V.A., Kozlov, A.D., Spiridonov, G.A., and Tsymarnyi, V.A., Termodinamicheskie svoistva metana (Thermodynamic Properties of Methane), Moscow: Izd. Standartov, 1979.

  14. Pribylov, A.A., Kalashnikov, S.M., and Serpinskii, V.V., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, no. 6, pp. 1233–1238.

  15. Duren, T., Sarkisov, L., Yaghi, O.M., and Snurr, R.Q., Langmuir, 2004, vol. 20, p. 2683.

    Article  Google Scholar 

  16. Fomkin, A.A., Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., Pribylov, A.A., Shkolin, A.V., Men’shchikov, I.E., Romanov, K.V., Teterevlev, R.V., Müller, U., Arnold, L., and Piontek, M., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 3, pp. 347–353.

    Article  Google Scholar 

  17. Bakaev, V.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1971, no. 12, p. 2648.

  18. Fomkin, A.A., Adsorption, 2005, vol. 11, nos. 3–4, pp. 425–436.

    Article  Google Scholar 

  19. Atlanta Gas Light Adsorbent Research Group (AGLARG), GRI Report: Adsorbed Natural Gas, Report to US Department of Energy, Contract 466590, 1997.

  20. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Yu., Shkolin, A.V., Strizhenov, E.M., and Khozina, E.V., Adsorption, 2017, vol. 23, nos. 2–3, pp. 327–339. https://doi.org/10.1007/s10450-016-9854-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Knyazeva.

Additional information

Translated by E. Khozina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazeva, M.K., Tsivadze, A.Y., Solovtsova, O.V. et al. Methane Adsorption on the Metal–Organic Framework Structure Al-BTC. Prot Met Phys Chem Surf 55, 9–14 (2019). https://doi.org/10.1134/S2070205119010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010064

Keywords:

Navigation