Skip to main content
Log in

Experimental and Computational Chemistry Studies on the Inhibition Efficiency of Phthalic Acid (PHA) for the Corrosion of Aluminum in Hydrochloric and Tetraoxosulphate (VI) Acids

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this work, phthalic acid is investigated for its corrosion inhibition properties (for aluminum in solutions of HCl and H2SO4) through experimental and computational chemistry methods. The experimental approach was achieved by using gravimetric (weight loss), linear and potentiodynamic polarization techniques as well as two spectroscopic techniques (Fourier transformed infra red and scanning electron microscopy). The theoretical approach incorporated the computation of semi empirical parameters and Fukui functions. Data obtained from weight loss were in strong agreement with those obtained from polarization methods. They generally pointed to the conclusion that phthalic acid inhibited the corrosion of aluminum better in solution of HCl than in solution of H2SO4. The inhibition efficiency of the inhibitor increases with increase in concentration but with increasing period of contact and temperature, the inhibition efficiency notably decreased. Confirmation of a physical adsorption mechanism was established by observed low values of activation energy and free energy of adsorption as well as the trend of decrease in inhibition efficiency with temperature. Frumkin and El awardy et al. adsorption isotherms best fitted the adsorption characteristics of phthalic acid on aluminium (in both HCl and H2SO4 media). The isotherms revealed that the inhibitor occupies more than one adsorption site and exhibited attractive behavior. Calculated quantum chemical parameters were within the range reported for good corrosion inhibitors while Fukui function, Huckel charge, HOMO–LUMO graphs and FTIR analyses indicated that phthalic acid is adsorbed on aluminum surface via the carboxylic oxygen atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Ameh, P.O. and Eddy, N.O., Congent Chem., 2016, vol. 2, p. 1253904.

    Google Scholar 

  2. Eddy, N.O., Momoh Yahaya, H., and Oguzie, E.E., J. Adv. Res., 2015, vol. 6, p. 203.

    Article  Google Scholar 

  3. Raja, P., Ismail, M., Ghoreishiamiri, S., et al., Chem. Eng. Commun., 2016, vol. 203, no. 9, p. 1145.

    Article  Google Scholar 

  4. Gravgard, M. and Van Lanschot, J., J. Inst. Conserv., 2011, vol. 35, no. 1, p. 14.

    Article  Google Scholar 

  5. Singh, W.P. and Bockris, J.O., Corros. Sci., 1996, vol. 96, p. 24.

    Google Scholar 

  6. Srinvaan, S., Veawab, A., and Aroonwilas, A., Energy Procedia, 2013, vol. 37, p. 890.

    Article  Google Scholar 

  7. Peter, A., Obot, I.B., and Sharma, S.K., Int. J. Ind. Chem., 2015, vol. 6, no. 3, p. 153.

    Article  Google Scholar 

  8. Eddy, N.O., Mol. Simul., 2010, vol. 35, no. 5, p. 354.

    Article  Google Scholar 

  9. Behzadi, H., Manzetti, S., Dargahi, M., et al., J. Mol. Struct., 2018, vol. 1151, no. 5, p. 34.

    Article  Google Scholar 

  10. Wang, H.L., Fan, H., and Zhang, J., J. Mater. Chem. Phys., 2003, vol. 72, no. 3, p. 655.

    Article  Google Scholar 

  11. Mohan, R., Selvaraj, S.K., Sakthivel Amalra, A.J., et al., Int. J. Eng. Res. Appl., 2014, vol. 4, no. 5, p. 22.

    Google Scholar 

  12. Dinnappa, R.K. and Mayanna, S.M., J. Appl. Electrochem., 1981, vol. 11, no. 1, p. 111.

    Article  Google Scholar 

  13. Tripton, C.D. and Waters, B.A., Patent Report, BibiTex, EndNote, Refman, Lubrizol Corp., 2005.

    Google Scholar 

  14. Cinitha, A., Umesha, P.K., and Iyer, N.R., KSCE J. Civ. Eng., 2014, vol. 18, no. 6, p. 1735.

    Article  Google Scholar 

  15. Singh, A., Ansari, K.R., Kumar, A., et al., J. Alloys Compd., 2017, vol. 712, p. 121.

    Article  Google Scholar 

  16. Thirumalaikumarasamy, D., Shanmugam, K., and Balasubramanian, V., J. Magnesium Alloys, 2014, vol. 2, no. 1, p. 36.

    Article  Google Scholar 

  17. Alaneme, K.K., Olusegun, S.J., and Adelowo, O.T., Alexandria Eng. J., 2016, vol. 55, no. 1, p. 673.

    Article  Google Scholar 

  18. Shi, J., Sun, W., Jiang, J., and Zhang, Y., Constr. Build. Mater., 2016, vol. 111, p. 805.

    Article  Google Scholar 

  19. Kumari, P.P., Shetty, P., and Rao, S.A., Arabian J. Chem., 2017, vol. 10, p. 653.

    Article  Google Scholar 

  20. Slemnik, M., Mater. Des., 2016, vol. 89, no. 5, p. 795.

    Article  Google Scholar 

  21. Guinon, P.V., Igual, M.A., and Garcia, A.J., Corros. Sci., 2009, vol. 51, no. 10, p. 2406.

    Article  Google Scholar 

  22. Eddy, N.O., Pigm. Resin Technol., 2010, vol. 39, no. 6, p. 347.

    Google Scholar 

  23. Karthikaisevi, R. and Subhashini, S., J. Assoc. Arab Univ. Basic Appl. Sci., 2014, vol. 16, p. 74.

    Google Scholar 

  24. Sharma, S., Mudhoo, A., Jain, G., and Sharma, J., Green Chem. Lett. Rev., 2010, vol. 3, no. 1, p. 7.

    Article  Google Scholar 

  25. Haque, J., Ansari, K.R., Srivastava, V., et al., J. Ind. Eng. Chem., 2017, vol. 49, p. 176.

    Article  Google Scholar 

  26. Chakravarthy, M.P., Mohana, K.N., and Pradeep Kumar, C.B., Int. J. Ind. Chem., 2014, vol. 5, p. 19.

    Article  Google Scholar 

  27. Saban, E., Zaki, S., Savas, K., et al., J. Mol. Struct., 2017, vol. 1134, p. 751.

    Article  Google Scholar 

  28. Efil, K. and Obot, I.B., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 1139.

    Article  Google Scholar 

  29. Zarrouk, A., Hammouti, B., Dafali, A., et al., J. Saudi Chem. Soc., 2014, vol. 18, p. 450.

    Article  Google Scholar 

  30. Ju, H., Ding, L., and Sun, C., Adv. Mater. Sci. Eng., 2015.

  31. Eddy, N.O., Ameh, P.O., and Odiongenyi, A.O., Port. Electrochim. Acta, 2014, vol. 32, no. 3, p. 183.

    Article  Google Scholar 

  32. Eddy, N.O. and Ita, B.I., Int. J. Quantum Chem., 2011, vol. 111, no. 14, p. 3456.

    Google Scholar 

  33. Eddy, N.O., Ibok, U.J., Ameh, P.O., et al., Chem. Eng. Commun., 2014, vol. 201, no. 10, p. 1360.

    Article  Google Scholar 

  34. Gao, J., Hu, Y., Li, S., et al., Spectrochim. Acta, Part A, 2013, vol. 104, p. 41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nnabuk Okon Eddy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul Ocheje Ameh, Nnabuk Okon Eddy Experimental and Computational Chemistry Studies on the Inhibition Efficiency of Phthalic Acid (PHA) for the Corrosion of Aluminum in Hydrochloric and Tetraoxosulphate (VI) Acids. Prot Met Phys Chem Surf 54, 1169–1181 (2018). https://doi.org/10.1134/S2070205118060035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118060035

Keywords:

Navigation