Skip to main content
Log in

Size Characteristics of the Surface Tension of One- and Two-Component Metal Melts

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

A molecular theory based on the lattice gas model is employed to describe the surface tension of the vapor–liquid interfaces of one- and two-component metal melts. The surface tension of the melts are calculated in the quasi-chemical approximation of taking into account intermolecular interactions of the nearest neighbors. Parameters of the model are found from the experimental data for the bulk surface tension of the melts, which enables the calculation of the surface tensions of vapor–liquid interfaces of one- and two-component droplets with different sizes as a function of their radii. Estimates for the minimum size of small droplets of melts having the properties of a homogeneous phase inside them, which correspond to their thermodynamic stability, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamson, A.W., Physical Chemistry of Surfaces, New York, London, Sydney, Toronto: John Wiley and Sons, 1975.

    Google Scholar 

  2. Khokonov, Kh.B., Poverkhnostnye yavleniya v rasplavakh i voznikayushchikh iz nikh tverdykh fazakh (Surface Phenomena in Melts and Solid Phases which Appear in Melts), Chisinau: Shtiintsa, 1974.

    Google Scholar 

  3. Nizhenko, N.I. and Floka, L.I., Poverkhnostnoe natyazhenie zhidkikh metallov i splavov (Surface Tension in Liquid Metals and Alloys), Moscow: Metallurgiya, 1981.

    Google Scholar 

  4. Jaycock, M.J. and Parfitt, G.D., Chemistry of Interfaces, New York: John Wiley and Sons, 1981.

    Google Scholar 

  5. Semenchenko, V.K., Poverkhnostnye yavleniya v metallakh i splavakh (Surface Phenomena in Metals and Alloys), Moscow: Gostekhizdat, 1957.

    Google Scholar 

  6. Volmer, M., Kinetik der Phasenbildung, Drezden, Leipzig: Theodor Steinkopff, 1939.

    Google Scholar 

  7. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Moscow, Leningrad: USSR Acad. Sci., 1945.

    Google Scholar 

  8. Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967.

    Google Scholar 

  9. Buff, F.P. and Kirkwood, J.G., J. Chem. Phys., 1950, vol. 18, p.991.

    Article  Google Scholar 

  10. Abraham, F.F., Homogeneous Nucleation Theory. The Pretransition Theory of Vapor Condensation, New York: Academic Press, 1974.

    Google Scholar 

  11. Lushnikov, A.A. and Sutugin, A.G., Usp. Khim., 1976, vol. 45, p.385.

    Article  Google Scholar 

  12. Lushnikov, A.A., Dokl. Akad. Nauk SSSR, 1977, vol. 234, p.97.

    Google Scholar 

  13. Ono, S. and Kondo, S., Molecular Theory of Surface Tension in Liquids, Berlin, Gottinhen, Heidelberg: Springer, 1960.

    Google Scholar 

  14. Rowlinson, J.S. and Widom, B., Molecular Theory of Capillarity, Oxford: Clarendon Press, 1982.

    Google Scholar 

  15. Croxton, C.A., Liquid State Physics–Statistical Mechanical Introduction, Cambridge: Cambridge Univ. Press, 1974.

    Book  Google Scholar 

  16. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 2, p.180.

    Article  Google Scholar 

  17. Tovbin, Yu.K., Zaitseva, E.S., and Rabinovich, A.B., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 10, p. 1957.

    Article  Google Scholar 

  18. Zaitseva, E.S. and Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 11, p. 2208.

    Article  Google Scholar 

  19. Tovbin, Yu.K. and Zaitseva, E.S., High Temp., 2018, vol. 56 (in press).

  20. Tovbin, Yu.K., Theory of Physical Chemistry Processes at a Gas–Solid Surface Processes, Boca Raton, FL: CRC Press, 1991.

    Google Scholar 

  21. Tovbin, Yu.K., Molecular Theory of Adsorption in Porous Bodies, Boca Raton, FL: CRC Press, 2018.

    Google Scholar 

  22. Tovbin, Yu.K., Kolloidn. Zh., 1983, vol. 45, no. 4, p.707.

    Google Scholar 

  23. Iwamatsu, M., J. Phys.: Condens. Matter, 1994, vol. 6, p.173.

    Google Scholar 

  24. Baidakov, V.G. and Boltachev, G.Sh., Zh. Fiz. Khim., 1995, vol. 69, p.515.

    Google Scholar 

  25. Oxtoby, D.W. and Evans, R., J. Chem. Phys., 1988, vol. 89, p. 7521.

    Article  Google Scholar 

  26. Bykov, T.V. and Shchekin, A.K., Inorg. Mater., 1999, vol. 35, no. 6, p.641.

    Google Scholar 

  27. Bykov, T.V. and Shchekin, A.K., Colloid J., 1999, vol. 61, no. 2, p.144.

    Google Scholar 

  28. Moody, M.P. and Attard, P., J. Chem. Phys., 2002, vol. 117, p. 6705.

    Article  Google Scholar 

  29. He, S. and Attard, P., Chem. Phys., 2005, vol. 7, p. 2928.

    Google Scholar 

  30. Thompson, S.M., Gubbins, K.E., Walton, J.P.R., et al., J. Chem. Phys., 1984, vol. 81, p.530.

    Article  Google Scholar 

  31. Zhukhovitskii, D.I., Colloid J., 2003, vol. 65, no. 4, p.440.

    Article  Google Scholar 

  32. Gibbs, J.W., Elementary Principles in Statistical Mechanics, New York: Dover Publ., 1960.

    Google Scholar 

  33. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: John Wiley and Sons, 1954.

    Google Scholar 

  34. Prigogine, I.P., The Molecular Theory of Solutions, Amsterdam, New York, NY: Interscience Publ., 1957.

    Google Scholar 

  35. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: John Wiley and Sons, 1960.

    Google Scholar 

  36. Reid, R., Prausnitz, J., and Sherwood, T., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.

    Google Scholar 

  37. Gupta, R.P., Phys. Rev. B, 1981, vol. 23, p. 6265.

    Article  Google Scholar 

  38. Cleri, F. and Rosato, V., Phys. Rev. B, 1993, vol. 1993 V, p.22.

    Article  Google Scholar 

  39. Paz-Borbón, L.O., Computational Studies of Transition Metal Nanoalloys, Berlin, Heidelberg: Springer, 2011.

    Book  Google Scholar 

  40. Solov’yov, I.A., Korol, A.V., and Solov’yov, A.V., Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer, Springer Int., 2017.

    Book  Google Scholar 

  41. Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities. Handbook), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.

  42. Basin, A.S., Butlerov. Soobshch., 2002, no. 83, p.83.

    Google Scholar 

  43. Bokshtein, B.S., Bokshtein, S.Z., and Zhukhovitskii, A.A., Termodinamika i kinetika diffuzii v tverdykh telakh (Thermodynamics and Kinetics of Diffusion in Solids), Moscow: Metallurgiya, 1974.

    Google Scholar 

  44. Bokshtein, B.S., Diffuzii v metallakh (Diffusions in Metals), Moscow: Metallurgiya, 1978.

    Google Scholar 

  45. Mehrer, H., Diffusion in Solids, vol. 155 of Springer Series in Solid-State Sciences, Berlin, Heidelberg: Springer, 2007.

    Book  Google Scholar 

  46. Drits, M.E., Svoistva elementov. Spravochnik (Properties of Elements. Handbook), Moscow: Metallurgiya, 1985.

    Google Scholar 

  47. Han, X.J. and Wei, B., Philos. Mag., 2003, vol. 83, no. 13, p. 1511.

    Article  Google Scholar 

  48. Xiao Feng, et al., Trans. Nonferrous Met. Soc. China, 2008, no. 18, p. 1184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Original Russian Text © E.S. Zaitseva, Yu.K. Tovbin, 2018, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2018, Vol. 54, No. 5, pp. 415–419.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, E.S., Tovbin, Y.K. Size Characteristics of the Surface Tension of One- and Two-Component Metal Melts. Prot Met Phys Chem Surf 54, 749–753 (2018). https://doi.org/10.1134/S2070205118050246

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118050246

Keywords

Navigation