Skip to main content
Log in

Passivation of Nickel in NaOH Solutions

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The passivation behavior of Ni electrode in NaOH solutions is studied by cyclic voltammetry technique. Different experimental factors, such as, electrolyte concentration, voltage scanning rate and the sweeping potential range are examined. The cyclic voltammgrams data, Cvs, indicated a correlation between two well–defined anodic oxidation peaks and only cathodic peak. The first anodic peak was attributed to the oxidation of Ni to Ni(OH)2, followed by a passive region corresponding to the transformation of Ni(OH)2 to β-NiOOH. The second anodic peak was suggested to correspond to the oxidation of Ni(OH)2 or NiO to some higher oxides of nickel. The cathodic branch of the cyclic voltammogram was characterized by only one cathodic peak, which was splitted into two sub peaks on increasing the concentration of NaOH. These peaks are thought to correspond to the reduction of (or part of) the products formed during the second anodic peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Parshutin, V., Bogdashkina, N.L., and Chernov, G.P., Prot. Met., 2007, vol. 43, p.59.

    Article  Google Scholar 

  2. Esmailzadeh, S., Khorsand, S., Raeissi, K., et al., Surf. Coat. Technol., 2015, vol. 283, p.337.

    Article  Google Scholar 

  3. Honga, K.H., Kima, J.H., Changb, K., and Kwo, J., Comput. Mater. Sci., 2016, vol. 117, p.215.

    Article  Google Scholar 

  4. Martini, E.M.A., Amaral, S.T., and Muller, I.L., Corros. Sci., 2004, vol. 46, p. 2097.

    Article  Google Scholar 

  5. Marcus, P., Electrochim. Acta, 1998, vol. 43, p.109.

    Article  Google Scholar 

  6. Gildenpfennig, A., Gramberg, U., and Hohlneicher, G., Corros. Sci., 2003, vol. 45, p.575.

    Article  Google Scholar 

  7. Komath, M., Mater. Chem. Phys., 1996, vol. 45, p.171.

    Article  Google Scholar 

  8. Féron, D., Guerre, C., Herms, E., and Laghoutaris, P., in Stress Corrosion Cracking of Nickel Based Alloys in Water-Cooled Nuclear Reactors: The Coriou Effect, Woodhead Publ., 2016, p.325.

    Book  Google Scholar 

  9. Staehle, R.W., in Stress Corrosion Cracking of Nickel Based Alloys in Water-Cooled Nuclear Reactors: The Coriou Effect, Woodhead Publ., 2016, p.3.

    Book  Google Scholar 

  10. Schultze, J.W. and Lohrengel, M.M., Electrochim. Acta, 2000, vol. 45, p. 2499.

    Article  Google Scholar 

  11. Morales-Guio, C.G., Mayer, M.T., Yella, A., et al., J. Am. Chem. Soc., 2015, vol. 137, p. 9927.

    Article  Google Scholar 

  12. Wang, H.H., Lee, W., Deng, Y., et al., Nat. Commun., 2015, vol. 6, p.1.

    Google Scholar 

  13. Garcia-Garciaa, F.J., Skeldona, P., Thompsona, G.E., and Smith, G.C., Electrochim. Acta, 2012, vol. 75, p.229.

    Article  Google Scholar 

  14. Abd El-Haleem, S.M. and Abd El Wanees, S., Mater. Chem. Phys., 2011, vol. 128, p.418.

    Article  Google Scholar 

  15. Franceschinia, E.A., Lacconib, G.I., and Cortia, H.R., Electrochim. Acta, 2015, vol. 159, p.210.

    Article  Google Scholar 

  16. Kuleshov, V.N., Kuleshov, N.V., Grigoriev, S.A., et al., Int. J. Hydrogen Energy, 2016, vol. 41, p.36.

    Article  Google Scholar 

  17. Seghiouer, A., Chevalet, J., Barhoun, A., and Lantelme, F., J. Electroanal. Chem., 1998, vol. 442, p.113.

    Article  Google Scholar 

  18. Nishimura, R., Corrosion, 1987, vol. 43, p.486.

    Article  Google Scholar 

  19. D’Alkaine, C.V. and Santanna, M.A., J. Electroanal. Chem., 1998, vol. 457, p.13.

    Article  Google Scholar 

  20. Kikuchi, N. and Seo, M., Corros. Sci., 2005, vol. 48, p.994.

    Article  Google Scholar 

  21. Okuyama, M. and Haruyama, S., Corros. Sci., 1974, vol. 14, p.1.

    Article  Google Scholar 

  22. Visscher, W. and Barendrecht, E., Surf. Sci., 1983, vol. 135, p.436.

    Article  Google Scholar 

  23. De Souza, L.L.M., Kong, F.P., Mclarnon, F.R., and Muller, R.H., Electrochim. Acta, 1997, vol. 42, p. 1253.

    Article  Google Scholar 

  24. Wolf, J.F., Yeh, L.S.R., and Damjanovic, A., Electrochim. Acta, 1981, vol. 26, p.409.

    Article  Google Scholar 

  25. Abd El Aal, E.E. and Abd El Haleem, S.M., J. Failure Anal. Prev., 2008, vol. 82, p.557.

    Article  Google Scholar 

  26. Schrebler Guzmán, R.S., Vilche, J.R., and Arvia, A.J., Corros. Sci., 1978, vol. 18, p.765.

    Article  Google Scholar 

  27. Bates, R., Electrometric pH Measurements, New York, London: John Wiley and Sons, 1954, p.41.

    Google Scholar 

  28. Delahy, P., New Instrumental Methods in Electrochemistry, New York: Interscience, 1953.

    Google Scholar 

  29. Medway, S.L., Lucas, C.A., Kowal, A., et al., J. Electroanal. Chem., 2006, vol. 587, p.172.

    Article  Google Scholar 

  30. Pourbaix, M., in Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston, TX: National Association of Corrosion Engineers, 1974, p.330.

    Google Scholar 

  31. Vilche, J.R. and Arvia, A.J., Corros. Sci., 1975, vol. 15, p.419.

    Article  Google Scholar 

  32. Bockris, J.O’M., Reddy, A.K.N., and Rao, B., J. Electrochem. Soc., 1966, vol. 113, p. 1133.

    Article  Google Scholar 

  33. Macattur, D.M., J. Electrochem. Soc., 1970, vol. 117, p.422.

    Article  Google Scholar 

  34. Bode, H., Dehmelt, K., and Witte, J., Electrochim. Acta, 1966, vol. 11, p. 1079.

    Article  Google Scholar 

  35. Bolzàn, J.A., Jàuregui, E.A., and Arvia, A.J., Electrochim. Acta, 1963, vol. 8, p.841.

    Article  Google Scholar 

  36. Davies, D.E. and Barker, W., Corrosion, 1964, vol. 20, p.47.

    Article  Google Scholar 

  37. Admas, R., Electrochemistry of Solid Electrode, New York: Marcel Dekker, 1969, p.143.

    Google Scholar 

  38. Dijksma, M.W. and Notten, P.H.L., Electrochim. Acta, 2006, vol. 51, p. 3609.

    Article  Google Scholar 

  39. Dickinson, T., Povey, A., and Sherwood, P., J. Chem. Soc. Faraday Trans., 1977, vol. 73, p.327.

    Article  Google Scholar 

  40. El Wakked, S.E.S. and Emara, S.H., J. Chem. Soc., 1957, p. 3770.

    Google Scholar 

  41. Briggs, G.W.D., Jones, E., and Wynne-Jones, W.F.K., Trans. Faraday Soc., 1955, vol. 51, p. 1433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abd El Wanees.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El Haleem, S.M., Abd El Wanees, S. Passivation of Nickel in NaOH Solutions. Prot Met Phys Chem Surf 54, 859–865 (2018). https://doi.org/10.1134/S2070205118050088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118050088

Keywords

Navigation