Skip to main content
Log in

X-Ray Studies of Conformational Transformations in the Composition of Nanofiltration Films

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Conformational transformations in the structure of the surface layer and the substrate of initial and working nanofiltration films have been investigated in this work using large-angle X-ray scattering. It has been determined that the mechanical load caused by excess pressure corresponding to 1.5 MPa in the case of OFAM-K porous-composition film has resulted in conformational changes of Phenylon C-4 macromolecules in crystal and amorphous intercrystallite phases; in this case, the calculated degrees of crystallinity have decreased from 49 to 36%. It has been noted that there is the polymorphous rearrangement of the crystal phase with the change of the sizes of crystal cell toward the crystal axis (c) and an increase in the crystallinity from 44 to 55% in the working specimen of the OPMN-P-composition nanofiltration film; in this case, the amorphous phase opens. A full calculation of the radial-distribution function of the atoms of initial and working films has been carried out, which confirms that there is rearrangement of lattice cells due to the increase in atomic distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, K., Abdalla, A., Khaleel, M., et al., Desalination, 2017, vol. 401, p.190.

    Article  Google Scholar 

  2. Gupta, S.K., Singh, P., and Kumar, R., Radiat. Eff. Defects Solids, 2014, vol. 169, no. 8, p.679.

    Article  Google Scholar 

  3. Li, W., Lou, L., Hai, Yu., et al., RSC Adv., 2015, vol. 5, no. 67, p. 54125.

    Article  Google Scholar 

  4. Shaffer, D.L., Tousley, M.E., and Elimelech, M., J. Membr. Sci., 2017, vol. 525, p.249.

    Article  Google Scholar 

  5. Aslamazova, T.R., Kotenev, V.A., Zolotarevskii, V.I., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 5, p.572.

    Article  Google Scholar 

  6. Wu, S., Qin, X., and Li, M., J. Ind. Text., 2014, vol. 44, no. 1, p.85.

    Article  Google Scholar 

  7. Sun, Z. and Chen, F., Int. J. Biol. Macromol., 2016, vol. 96, p.143.

    Article  Google Scholar 

  8. Velu, S., Rambabu, K., and Muruganandam, L., Int. J. ChemTech Res., 2014, vol. 6, no. 1, p.565.

    Google Scholar 

  9. Ridgway, H.F., Orbell, G., and Gray, S., J. Membr. Sci., 2017, vol. 524, p.436.

    Article  Google Scholar 

  10. Drazevic, E., Kosutic, K., and Freger, V., Water Res., 2014, vol. 49, p.444.

    Article  Google Scholar 

  11. Yan, F., Chen, H., Lü, Y., et al., J. Membr. Sci., 2016, vol. 513, p.108.

    Article  Google Scholar 

  12. Bocahut, A., Delannoy, J.Y., Vergelati, C., and Mazeau, K., Cellulose, 2014, vol. 21, p. 3897.

    Article  Google Scholar 

  13. Myronchuk, V.G., Kucheruk, D.D., Zmievskii, Yu.G., et al., Pet. Chem., 2013, vol. 53, no. 7. p.439.

    Article  Google Scholar 

  14. Kovaleva, O.A. and Kovalev, S.V., Pet. Chem., 2017, vol. 57, no. 6, p.542.

    Article  Google Scholar 

  15. https://doi.org/www.vladipor.ru/.

  16. Bonn, A.I., Dzyubenko, V.G., and Shishova, I.I., Vysokomol. Soedin., Ser. B, 1993, vol. 35, no. 7, p.922.

    Google Scholar 

  17. Kovalev, S.V., Membr. Membr. Tekhnol., 2013, no. 191, p.191.

    Google Scholar 

  18. Azarov, V.I., Burov, A.V., and Obolenskaya, A.V., Khimiya drevesiny i sinteticheskikh polimerov. Uchebnik dlya vuzov (Chemistry of Wood and Synthetic Polymers. Students’ Book for Institutions of Higher Education), St. Petersburg: St. Petersburg State Forest Technical Univ. under Name of S.M. Kirov, 1999.

    Google Scholar 

  19. Polikarpov, V.M., Doctoral Sci. (Chem.) Dissertation, Moscow: A. V. Topchiev Institute of Petrochemical Synthesis Russ. Acad. Sci., 2003.

    Google Scholar 

  20. Dupuis M., Devanathan R., Glezakou V., and Venkatnathan A. https://doi.org/www.hydrogen.energy.gov/pdfs/review07/bes_6_dupuis.pdf.

  21. Shen, M., Keten, S., and Lueptow, R., J. Membr. Sci., 2016, vol. 509, p.36.

    Article  Google Scholar 

  22. Fedotov, Yu.A. and Smirnova, N.N., Plast. Massy, 2008, no. 18, p.18.

    Google Scholar 

  23. Arisova, V.N., Struktura i svoistva KM. Uchebnoe posobie (Structure and Properties of KM. Students’ Book), Volgograd: Volgograd State Technical Univ., 2008.

    Google Scholar 

  24. Radulovic, J., Sci. Tech. Rev., 2005, vol. 55, nos. 3–4, p.21.

    Google Scholar 

  25. Tuigiev, Sh., Ginzburg, B.M., Osava, E., et al., Dokl. Akad. Nauk Resp. Tadzh., 2008, vol. 51, no. 3, p. 208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lazarev.

Additional information

Original Russian Text © S.I. Lazarev, Yu.M. Golovin, O.A. Kovaleva, V.N. Kholodilin, I.V. Khorokhorina, 2018, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2018, Vol. 54, No. 5, pp. 466–475.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M., Kovaleva, O.A. et al. X-Ray Studies of Conformational Transformations in the Composition of Nanofiltration Films. Prot Met Phys Chem Surf 54, 804–812 (2018). https://doi.org/10.1134/S2070205118040081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118040081

Keywords

Navigation