Temperature dependences of methane elution on a Cu3(BTC)2 metal-organic framework

Physicochemical Processes at the Interfaces
  • 14 Downloads

Abstract

Methane elution from a helium flow was studied on a metal-organic framework Cu3(BTC)2 with gas chromatography under temperatures from 20 to 60°C. Specific retention volumes were calculated, and heat of adsorption was determined. The obtained values are characteristic for the microporous adsorbents having relatively large micropores and a low total volume of the micropores. The calculated efficiencies of an adsorbent layer alter slightly and their absolute values are significantly smaller than those of the activated carbons. Efficient kinetic constant has a parabolic dependence on temperature with a minimum at 40°C. Correctness of the developed algorithms to calculate elution constants on adsorbent layers of small length has been confirmed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Habgood, H.W. and Hanlan, J.E., Can. J. Chem., 1959, vol. 37, p. 843.CrossRefGoogle Scholar
  2. 2.
    Dubinin, M.M., Nikolaev, K.M., Selin, M.E., and Tronin, S.Ya., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, vol. 30, p. 19.CrossRefGoogle Scholar
  3. 3.
    Dubinin, M.M., Nikolaev, K.M., Selin, M.E., et al., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, vol. 30, p. 21.CrossRefGoogle Scholar
  4. 4.
    Veselova, I.V. and Tokarev, V.K., Zh. Fiz. Khim., 1978, vol. 52, p. 784.Google Scholar
  5. 5.
    Gubkina, M.L. and Polyakov, N.S., Russ. Chem. Bull., 2002, vol. 51, p. 1675.CrossRefGoogle Scholar
  6. 6.
    Klein, N., Henschel, A., and Kaskel, S., Microporous Mesoporous Mater., 2010, vol. 129, p. 238.CrossRefGoogle Scholar
  7. 7.
    Finsy, V., De Bruyne, S., Alaerts, L., et al., Stud. Surf. Sci. Catal. B, 2007, vol. 170, p. 2048.CrossRefGoogle Scholar
  8. 8.
    Larin, A.V., Russ. Chem. Bull., 2011, vol. 60, p. 376.CrossRefGoogle Scholar
  9. 9.
    Larin, A.V., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 6, p. 743.CrossRefGoogle Scholar
  10. 10.
    Larin, A.V., Colloid J., 2011, vol. 73, no. 6, p. 856.CrossRefGoogle Scholar
  11. 11.
    Larin, A.V., Colloid J., 2014, vol. 76, no. 4, p. 447.CrossRefGoogle Scholar
  12. 12.
    Larin, A.V., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 6, p. 733.CrossRefGoogle Scholar
  13. 13.
    Roginskii, S.Z., Yanovskii, M.I., and Berman, A.D., Osnovy primeneniya khromatografii v katalize (Chromatography in Catalysis: Foundations of Application), Moscow: Nauka, 1972.Google Scholar
  14. 14.
    Kucera, E., J. Chromatogr., 1965, vol. 19, p. 237.CrossRefGoogle Scholar
  15. 15.
    Larin, A.V., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 6, p. 642.CrossRefGoogle Scholar
  16. 16.
    Larin, A.V., J. Eng. Phys. Thermophys., 2011, vol. 84, p. 1263.CrossRefGoogle Scholar
  17. 17.
    James, A.T. and Martin, A.J.P., Analyst, 1952, vol. 77, p. 915.CrossRefGoogle Scholar
  18. 18.
    Larin, A.V., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1983, vol. 32, p. 212.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations