Synthesis of [(sulfamoylphenyl)carbamothioyl]benzamides as corrosion inhibitors in hydrochloric acid solution

Physicochemical Problems of Materials Protection
  • 36 Downloads

Abstract

The Sulfamoylphenyl)carbamothioyl]benzamides were synthesized of three-component reaction ammonium thiocyanate, benzoyl chlorides and sulfanilamide in a single vessel at room temperature. The corrosion behavior of these compounds on carbon steel in 1 M HCl solution were investigated by using scanning electrochemical microscopy (SECM), potentiodynamic, and electrochemical impedance spectroscopy. SECM was operated in the substrate-generation/tip-collection mode using Fe2+/Fe3+ redox couple as redox mediator. The tip current values and local ferrous ion concentrations were obtained. Potentiodynamic polarization studies show that sulfaniamides act as a mixed inhibitor. The adsorption of these compounds on the carbon steel surface obeys the Langmuir’s adsorption isotherm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finsgar, M. and Jackson, J., Corros. Sci., 2014, vol. 86, p. 17.CrossRefGoogle Scholar
  2. 2.
    Lagrene, M., Mernari, B., Traisnel, M., and Bentiss, F., Corros. Sci., 2002, vol. 44, p. 573.CrossRefGoogle Scholar
  3. 3.
    Ebenso, E.E., Obot, I.B., and Murulana, L.C., Int. J. Electrochem. Sci., 2010, vol. 5, p. 1574.Google Scholar
  4. 4.
    Gece, G., Corros. Sci., 2011, vol. 52, p. 3873.CrossRefGoogle Scholar
  5. 5.
    Awad, M.I., J. Appl. Electrochem., 2006, vol. 36, p. 1163.CrossRefGoogle Scholar
  6. 6.
    Raja, P.B. and Sethuraman, M.G., Mater. Lett., 2008, vol. 62, p. 113.CrossRefGoogle Scholar
  7. 7.
    Chen, W., Qun, L.H., and Bing, L., Corros. Sci., 2011, vol. 53, p. 3356.CrossRefGoogle Scholar
  8. 8.
    Slepski, P., Gerengi, H., Jazdzewska, A., et al., Constr. Build. Mater., 2014, vol. 52, p. 482.CrossRefGoogle Scholar
  9. 9.
    Obot, I.B., Ebenso, E.E., and Gasem, Z.M., Int. J. Electrochem. Sci., 2012, vol. 7, p. 1997.Google Scholar
  10. 10.
    Arslan, T., Kandemirli, F., Ebenso, E., et al., Corros. Sci., 2009, vol. 51, p. 35.CrossRefGoogle Scholar
  11. 11.
    El-Naggar, M.M., Corros. Sci., 2007, vol. 49, p. 2226.CrossRefGoogle Scholar
  12. 12.
    Ebenso, E.E., Arslan, T., Kandemirli, F., et al., Int. J. Quantum Chem., 2010, vol. 110, p. 1003.CrossRefGoogle Scholar
  13. 13.
    Abdallah, M., Corros. Sci., 2002, vol. 44, p. 717.CrossRefGoogle Scholar
  14. 14.
    Abd El-Maksoud, S.A., Appl. Surf. Sci., 2003, vol. 206, p. 129.CrossRefGoogle Scholar
  15. 15.
    Esmaeili, N., Neshati, J., and Yavari, I., J. Ind. Eng. Chem., 2015, vol. 22, p. 159.CrossRefGoogle Scholar
  16. 16.
    Pillai, K.C. and Narayan, R., J. Electrochem. Soc., 1978, vol. 125, p. 1393.CrossRefGoogle Scholar
  17. 17.
    Loto, R., Loto, C.A., and Popoola, A.P.I., J. Mater. Environ. Sci., 2012, vol. 3, p. 885.Google Scholar
  18. 18.
    Pust, S.E., Maier, W., and Wittstock, G., J. Phys. Chem., 2008, vol. 222, p. 1463.Google Scholar
  19. 19.
    Izquierdo, J., Santana, J., Gonzalez, S., and Souto, R., Electrochim. Acta, 2010, vol. 55, p. 8791.CrossRefGoogle Scholar
  20. 20.
    Shen, Y., Trauble, M., and Wittstock, G., Anal. Chem., 2008, vol. 80, p. 750.CrossRefGoogle Scholar
  21. 21.
    Zhou, J., Zu, Y., and Bard, A.J., J. Electroanal. Chem., 2000, vol. 491, p. 22.CrossRefGoogle Scholar
  22. 22.
    González-Garcia, Y., Burstein, G., González, S., and Souto, R., Electrochem. Commun., 2004, vol. 6, p. 637.CrossRefGoogle Scholar
  23. 23.
    Volker, E., González, C., and Calvo, J., Electrochem. Commun., 2006, vol. 8, p. 179.CrossRefGoogle Scholar
  24. 24.
    Bard, A.J. and Mirkin, M.V., Scanning Electrochemical Microscopy, New York Wiley, 2001.CrossRefGoogle Scholar
  25. 25.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York Wiley, 1980.Google Scholar
  26. 26.
    Ahama, D.I., Prasad, R., and Quraishi, M.A., Mater. Chem. Phys., 2010, vol. 124, p. 1155.CrossRefGoogle Scholar
  27. 27.
    Singh, A.K. and Ebenso, E.E., Res. Chem. Intermed., 2013, vol. 39, p. 1823.CrossRefGoogle Scholar
  28. 28.
    Li, W., He, Q., Zhang, S., et al., J. Appl. Electrochem., 2008, vol. 38, p. 289.CrossRefGoogle Scholar
  29. 29.
    Martinez, S. and Metikos-Hukovic, M., J. Appl. Electrochem., 2003, vol. 33, p. 1137.CrossRefGoogle Scholar
  30. 30.
    McCafferty, E. and Hackerman, N., J. Electrochem. Soc., 1972, vol. 119, p. 146.CrossRefGoogle Scholar
  31. 31.
    Bentiss, F., Lebrini, M., Lagren’ee, M., et al., Electrochim. Acta, 2007, vol. 52, p. 6865.CrossRefGoogle Scholar
  32. 32.
    Donahue, F.M. and Nobe, K., J. Electrochem. Soc., 1965, vol. 112, p. 886.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Industrial Protection DivisionResearch Institute of Petroleum IndustryTehranIran
  2. 2.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations