Wear properties of rheo-squeeze cast aluminum matrix reinforced with nano particulates

  • Mohsen Ostad Shabani
  • Fatemeh Heydari
  • Ali Asghar Tofigh
  • Mohammad Reza Rahimipour
  • Mansour Razavi
  • Ali Mazahery
  • Parviz Davami
Nanoscale and Nanostructured Materials and Coatings

Abstract

There are many approaches to fabricate nanoparticles reinforced aluminum matrix composites. However, uniform distribution of nanoparticle within aluminum matrix remains a difficult challenge. In this study, a novel method is used by taking the advantages from squeeze casting of semi-solid aluminum slurry combined with electromagnetic field to refine the microstructure of the primary Al and eutectic Si phase, plus to obtain uniform distribution nano alumina particles in the aluminum matrix. It is noted that electromagnetic field plays an important role in the formation of non-dendritic primary α-Al particles and a great microstructure refinement occurs as a consequence of the pressure application. It can be seen that the increase in electromagnetic field causes smaller and rounder primary α-Al particles. A comparative study on abrasive wear behavior of nano Al2O3 reinforced aluminum metal matrix composite has been carried out in the present investigation. The mass loss of the pin was used to study the effect of Al2O3 addition on the wear resistance of the composite materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumar, S., Panwar, R., and Pandey, O., Metall. Mater. Trans. A, 2013, vol. 44, p. 1548.CrossRefGoogle Scholar
  2. 2.
    Shabani, M. and Mazahery, A., JOM, 2011, vol. 63, p. 132.CrossRefGoogle Scholar
  3. 3.
    Mazahery, A. and Shabani, M., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 817.CrossRefGoogle Scholar
  4. 4.
    Shabani, M., Mazahery, A., Davami, P., and Razavi, M., Int. J. Cast Met. Res., 2012, vol. 25, p. 53.CrossRefGoogle Scholar
  5. 5.
    Borgonovo, C., Apelian, D., and Makhlouf, M., JOM, 2011, vol. 63, p. 57.Google Scholar
  6. 6.
    Mazahery, A. and Shabani, M.O., Mater. Sci. Technol., 2013, vol. 29, p. 423.CrossRefGoogle Scholar
  7. 7.
    Shabani, M.O., Tofigh, A.A., Heydari, F., and Mazahery, A., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 2, p. 244.CrossRefGoogle Scholar
  8. 8.
    Shabani, M., Mazahery, A., Bahmani, A., Davami, P., and Varahram, N., Kovove Mater.-Met. Mater., 2011, vol. 49, p. 253.Google Scholar
  9. 9.
    Mazahery, A., Shabani, M., Rahimipour, M., et al., Kovove Mater.-Met. Mater., 2012, vol. 50, p. 107.Google Scholar
  10. 10.
    Shabani, M. and Mazahery, A., Trans Indian Inst. Met., 2013, vol. 66, p. 65.CrossRefGoogle Scholar
  11. 11.
    Shabani, M. and Mazahery, A., Arch. Met. Mater., 2011, vol. 56, p. 671.Google Scholar
  12. 12.
    Mazahery, A. and Shabani, M. O., Metall. Mater. Trans. A, 2012, vol. 43, p. 5279.CrossRefGoogle Scholar
  13. 13.
    Shabani, M., Alizadeh, M., and Mazahery, A., Fatigue Fract. Eng. Mater. Struct., 2011, vol. 34, p. 1035.CrossRefGoogle Scholar
  14. 14.
    Mazahery, A. and Shabani, M. O., Ceram. Int., 2012, vol. 38, p. 1887.CrossRefGoogle Scholar
  15. 15.
    Shabani, M.O. and Mazahery, A., Ceram. Int., 2013, vol. 39, p. 1351.CrossRefGoogle Scholar
  16. 16.
    Mazahery, A. and Shabani, M., JOM, 2014, vol. 66, p. 726.CrossRefGoogle Scholar
  17. 17.
    Tofigh, A.A. and Shabani, M.O., Acta Metall. Slov., 2013, vol. 19, p. 94.Google Scholar
  18. 18.
    Shabani, M., Mazahery, A., Rahimipour, M., et al., Kovove Mater.-Met. Mater., 2012, vol. 50, p. 25.Google Scholar
  19. 19.
    Tofigh, A.A., Rahimipour, M.R., Shabani, M.O., et al., J. Manuf. Process., 2013, vol. 15, p. 518.CrossRefGoogle Scholar
  20. 20.
    Lo, J.S.H., Dionne, S., Dignard-Bailey, L., et al., in Processing of Ceramic and Metal Matrix Composites, Mostaghaci, H., Ed., Oxford, UK: Pergamon, 1989.Google Scholar
  21. 21.
    Mazahery, A. and Shabani, M., Trans Indian Inst. Met., 2013, vol. 66, p. 171.CrossRefGoogle Scholar
  22. 22.
    Shabani, M. and Mazahery, A., Tribol. Ind., 2012, vol. 34, p. 166.Google Scholar
  23. 23.
    Kumar, S., Panwar, R.S., and Pandey, O.P., Ceram. Int., 2013, vol. 39, p. 6333.CrossRefGoogle Scholar
  24. 24.
    Rahimipour, M., Tofigh, A., Mazahery, A., and Shabani, M., Tribol.-Mater., Surf. Interfaces, 2013, vol. 7, p. 129.CrossRefGoogle Scholar
  25. 25.
    Mel’nikov, V.G., Prot. Met., 2005, vol. 41, no. 2, p. 154.CrossRefGoogle Scholar
  26. 26.
    Mazahery, A. and Shabani, M., Mater. Sci. Technol., 2013, vol. 28, p. 117.Google Scholar
  27. 27.
    Ravindran, P., Manisekar, K., Narayanasamy, R., and Narayanasamy, P., Ceram. Int., 2013, vol. 39, p. 1169.CrossRefGoogle Scholar
  28. 28.
    Mazahery, A. and Shabani, M., Trans. Indian Inst. Met., 2012, vol. 65, p. 145.CrossRefGoogle Scholar
  29. 29.
    Rahimipour, M., Tofigh, A., Shabani, M., and Davami, P., Tribol. Ind., 2014, vol. 36.Google Scholar
  30. 30.
    Yang, X.-F., Ze, X.-B., Wang, H.-Y., and Wang, H., Ceram. Int., 2009, vol. 35, p. 3495.CrossRefGoogle Scholar
  31. 31.
    Tofigh, A., Rahimipour, M., Shabani, M., and Davami, P., J. Compos. Mater., 2015, vol. 49, no. 13, p. 1653.CrossRefGoogle Scholar
  32. 32.
    Shabani, M., Rahimipour, M., Tofigh, A., and Davami, P., Neural Comput. Appl., 2015, vol. 26, p. 899.CrossRefGoogle Scholar
  33. 33.
    Poletika, I.M., Krylova, T.A., Ivanov, Y.F., et al., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 221.CrossRefGoogle Scholar
  34. 34.
    Teker, T., Karatas, S., and Yilmaz, S., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 94.CrossRefGoogle Scholar
  35. 35.
    Mazahery, A. and Shabani, M., Russ. Met., 2011, vol. 2011, p. 699.CrossRefGoogle Scholar
  36. 36.
    Shabani, M.O. and Mazahery, A., Indian J. Eng. Mater. Sci., 2012, vol. 19, p. 129.Google Scholar
  37. 37.
    Tofigh, A.A. and Shabani, M.O., Ceram. Int., 2013, vol. 39, p. 7483.CrossRefGoogle Scholar
  38. 38.
    Mazahery, A. and Shabani, M.O., Powder Technol., 2013, vol. 249, p. 530.CrossRefGoogle Scholar
  39. 39.
    Ostad Shabani, M. and Mazahery, A., Ceram. Int., 2013, vol. 39, p. 5271.CrossRefGoogle Scholar
  40. 40.
    Mazahery, A., Shabani, M., and Elrefaei, A., Int. J. Damage Mech., 2014, vol. 23, p. 899.CrossRefGoogle Scholar
  41. 41.
    Rahimipour, M.R., Tofigh, A.A., Mazahery, A., and Shabani, M.O., Neural Comput. Appl., 2014, vol. 24, p. 1531.CrossRefGoogle Scholar
  42. 42.
    Zhu, H., Jia, C., Li, J., et al., Powder Technol., 2012, vol. 217, p. 401.CrossRefGoogle Scholar
  43. 43.
    Shabani, M.O., Tofigh, A.A., Rahimipour, M.R., et al., Mater. Tehnol., 2014, vol. 48, p. 459.Google Scholar
  44. 44.
    Mazahery, A., Shabani, M.O., Alizadeh, M., and Tofigh, A.A., J. Compos. Mater., 2013, vol. 47, no. 14, p. 1765.CrossRefGoogle Scholar
  45. 45.
    Rahimipour, M., Tofigh, A., Mazahery, A., and Shabani, M., Neural Comput. Appl., 2014, vol. 24, p. 1531.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Mohsen Ostad Shabani
    • 1
    • 5
  • Fatemeh Heydari
    • 2
    • 5
  • Ali Asghar Tofigh
    • 3
    • 5
  • Mohammad Reza Rahimipour
    • 2
    • 5
  • Mansour Razavi
    • 2
    • 5
  • Ali Mazahery
    • 4
    • 5
  • Parviz Davami
    • 3
    • 5
  1. 1.Iran University of Industries and Mines (IUIM)TehranIran
  2. 2.Materials and Energy Research Center (MERC)TehranIran
  3. 3.Amirkabir University of TechnologyTehranIran
  4. 4.Department of Mechanical EngineeringMcMaster UniversityHamiltonCanada
  5. 5.Department of Materials EngineeringSharif University of TechnologyTehranIran

Personalised recommendations