Catalytic Properties of Gold Nanoparticles Prepared in Reverse Micelles

  • A. A. Odintsov
  • A. A. Revina
  • K. N. Zhavoronkova
  • O. A. Boeva
Nanoscale and Nanostructured Materials and Coatings


Adsorption and catalytic properties of gold nanoparticles of various sizes prepared by two methods of reduction in reverse micellar solutions were studied. Gold nanoparticles are capable of adsorbing molecular hydrogen and exhibiting catalytic activity in reactions of ortho—para conversion of protium and deuterium—hydrogen exchange. The size dependence of the catalytic activity of gold nanoparticles in reaction of H2—D2 exchange regardless of the method of preparation was determined.


Gold Nanoparticles Reverse Micelle Hydrogen Exchange Protium Arrhenius Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eliseev, A.A. and Lukashin, A.V., Funktsional’nye nanomaterialy (Functional Nanomaterials), Tret’yakov, Yu.D., Ed., Moscow: Fizmatlit, 2010.Google Scholar
  2. 2.
    Suzdalev, I.P., Nanotekhnologiya: Fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanocrystals, Nanostructures, and Nanomaterials), Moscow: LIBROKOM, 2009, 2nd ed.Google Scholar
  3. 3.
    Haruta, M., Yamada, N., Kobayashi, T., et al., J. Catal., 1989, vol. 115, p. 301.CrossRefGoogle Scholar
  4. 4.
    Antonov, A.Yu., Boeva, O.A., and Sergeev, M.O., RF Patent 2477175, 2013.Google Scholar
  5. 5.
    Boreskov, G.K., Savchenko, V.I., and Gorodetskii, V.V., Dokl. Akad. Nauk SSSR, 1969, vol. 189, p. 537.Google Scholar
  6. 6.
    Revina, A.A., RF Patent 2312741, 2007.Google Scholar
  7. 7.
    Revina, A.A., RF Patent 2322327, 2008.Google Scholar
  8. 8.
    Spirin, M.G., Brichkin, S.B., and Razumov, V.F., Ross. Nanotekhnol., 2006, vol. 1, nos. 1–2, p. 121.Google Scholar
  9. 9.
    Khlebtsov, B.N., Zharov, V.P., Melnikov, A.G., et al., Nanotechnology, 2006, vol. 17, p. 5267.Google Scholar
  10. 10.
    Morozov, P.A., Ershov, B.G., Abkhalimov, E.V., Dement’eva, O.V., Filippenko, M.A., Rudoy, V.M., and Roldughin, V.I., Colloid J., 2012, vol. 74, no. 4, p. 502.CrossRefGoogle Scholar
  11. 11.
    Zhavoronkova, K.N., Doctoral (Chem.) Dissertation, Moscow: Mendeleev Russ. Chem-Technol. Univ., 2009.Google Scholar
  12. 12.
    Eley, D.D. and Norton, P.R., Z. Phys. Chem., 1969, vol. 64, p. 145.CrossRefGoogle Scholar
  13. 13.
    Rideal, E.K., J. Res. Catal., 1968, vol. 16, p. 45.Google Scholar
  14. 14.
    Bonhoeffer, K.F. and Farkas, A., Trans. Faraday Soc., 1932, vol. 28, p. 242.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Odintsov
    • 1
  • A. A. Revina
    • 2
  • K. N. Zhavoronkova
    • 1
  • O. A. Boeva
    • 1
  1. 1.D. Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations