Advertisement

Thermal Activation of Type X Zeolites in the Presence of Carbon Dioxide

  • E. N. Ivanova
  • A. A. Averin
  • M. B. Alekhina
  • N. P. Sokolova
  • T. V. Kon’kova
New Substances, Materials, and Coatings
  • 43 Downloads

Abstract

It is found that the highest value of the separation factor of the nitrogen—oxygen mixture is observed for zeolite activated in the presence of 2 vol % CO2 in nitrogen. It is shown on the basis of IR studies that the formation of bicarbonate structures is most characteristic for this sample.

Keywords

Zeolite Oxygen Mixture Zeolite Sample Carbon Dioxide Content Zeolite Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, R.T., Gas Separation by Adsorption Processes, Boston: Butterworth, 1987.Google Scholar
  2. 2.
    Shumyatskii, Yu.I., Promyshlennye adsorbtsionnye protsessy (Industrial Adsorption Processes), Moscow: Kolos-S, 2009.Google Scholar
  3. 3.
    Rege, S.U. and Yang, R.T., Ind. Eng. Chem. Res., 1997, vol. 36, p. 5358.CrossRefGoogle Scholar
  4. 4.
    Hutson, N.D., Rege, S.U., and Yang, R.T., AIChE J., 1999, vol. 45, p. 724.CrossRefGoogle Scholar
  5. 5.
    Kazansky, V.B., Bulow, M., and Tichomirova, E., Adsorption, 2001, no. 7, p. 291.CrossRefGoogle Scholar
  6. 6.
    Alekhina, M.B., Baikova, A.O., Ahnazarova, S.L., and Konkova, T.V., Khim. Prom-st. Segodnya, 2011, no. 5, p. 29.Google Scholar
  7. 7.
    Ivanova, E.N., Alekhina, M.B., Ahnazarova, S.L., and Konkova, T.V., in 17th Int. Conf. “Zeolites and Ordered Porous Materials,” Moscow, July 7–12, 2013, Moscow, 2013, p. 297.Google Scholar
  8. 8.
    Alekhina, M.B., Ivanova, E.N., Ahnazarova, S.L., and Konkova, T.V., Vestn. Voronezh. Gos. Univ., Ser.: Khim. Biol. Farm., 2014, no. 2, p. 5.Google Scholar
  9. 9.
    Bertsch, L. and Habgood, H.W., J. Phys. Chem., 1963, vol. 67, p. 1621.CrossRefGoogle Scholar
  10. 10.
    Jacobs, P.A., Cauwelaert van, F.H., and Vansant, E.F., J. Chem. Soc. Faraday Trans., 1973, vol. 69, p. 1056.CrossRefGoogle Scholar
  11. 11.
    Jacobs, P.A., Cauwelaert van, F.H., and Vansant, E.F., J. Chem. Soc. Faraday Trans., 1973, vol. 69, p. 2130.CrossRefGoogle Scholar
  12. 12.
    Lerot, L., Poncelet, G., Dubru, M.L., and Fripiat, J.J., J. Catal., 1975, vol. 37, p. 396.CrossRefGoogle Scholar
  13. 13.
    Montanari, T. and Busca, G., Vibrat. Spectrosc., 2008, vol. 46, p. 45.CrossRefGoogle Scholar
  14. 14.
    Breck, D.W., Zeolite Molecular Sieves: Structure, Chemistry, and Use, New York: Wiley, 1973.Google Scholar
  15. 15.
    Sokolova, N.P., Oznakomlenie s metodom infrakrasnoi spektroskopii (Introduction to Infrared Spectroscopy), Samara: Univers-Grupp, 2007.Google Scholar
  16. 16.
    Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.Google Scholar
  17. 17.
    Rege, S.U. and Yang, R.T., Chem. Eng. Sci., 2001, vol. 56, p. 378.Google Scholar
  18. 18.
    Plyusnina, I.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow: Mosk. Gos. Univ., 1977.Google Scholar
  19. 19.
    Evans, J.V. and Whateley, T.L., Trans. Faraday Soc., 1967, vol. 63, p. 2769.CrossRefGoogle Scholar
  20. 20.
    Larin, A.V., Rybakov, A.A., Kovalev, V.L., et al., J. Catal., 2011, vol. 281, p. 212.CrossRefGoogle Scholar
  21. 21.
    Larin, A.V., Bryukhanov, I.A., Rybakov, A.A., et al., Microporous Mesoporous Mater., 2013, vol. 173, p. 15.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. N. Ivanova
    • 1
  • A. A. Averin
    • 2
  • M. B. Alekhina
    • 1
  • N. P. Sokolova
    • 2
  • T. V. Kon’kova
    • 1
  1. 1.Mendeleev Russian State Chemical Engineering UniversityMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations