The Dopant Aluminum Enhances CO Oxidation Catalyzed by Subnanometer Small Palladium Clusters: A DFT Study

  • Zhaoru Cao
  • Ling Guo
  • Ningning Ren
  • Naying Liu
  • Wenli Li
  • Xiaoli Zheng
  • Yayin Shi
  • Juan Guo
  • Yaru Xi
Physicochemical Processes at the Interfaces
  • 65 Downloads

Abstract

We have elucidated the mechanism of CO oxidation catalyzed by AlPd n (n = 1–3) clusters through first-principle density-functional theory (DFT) calculation. It is found that these subnanometer species transfer into reaction complexes which catalyzes CO oxidation through two different mechanisms, occurring via Langmuir-Hinshelwood paths. It is shown that mixing two different metals (Al and Pd) can have more beneficial effects than pure palladium on the catalytic activity and the alloyed AlPd2 cluster is proposed as the best effective nanocatalysts.

Keywords

Potential Energy Surface Density Function Theory AlPd Dopant Aluminum Adsorbed Carbon Dioxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Venezia, A.M., Liotta, L.F., Deganello, G., et al., Appl. Catal., A, 2001, vol. 211, p. 167.CrossRefGoogle Scholar
  2. 2.
    Weng, M.H. and Ju, S.P., J. Phys. Chem., 2012, vol. 116, p. 18803.Google Scholar
  3. 3.
    Wei, X., Wang, Z.C., He, S., et al., J. Am. Chem. Soc., 2008, vol. 130, p. 15879.CrossRefGoogle Scholar
  4. 4.
    Barrow, J.A., Sordelet, D.J., Besser, M.F., et al., J. Phys. Chem. A, 2002, vol. 106, p. 9204.CrossRefGoogle Scholar
  5. 5.
    Reveles, J.U., Johnson, G.E., Khanna, S.N., and Castleman, A.W.J., J. Phys. Chem., 2010, vol. 114, p. 5438.Google Scholar
  6. 6.
    Satoshi, H., Hiroaki, F., Madoka, O., et al., Chem. Mater., 2010, vol. 22, p. 6138.CrossRefGoogle Scholar
  7. 7.
    Mao, B.H., Chang, R., Lee, S., et al., J. Chem. Phys., 2013, vol. 138, p. 214304.CrossRefGoogle Scholar
  8. 8.
    Mehmood, F., Greeley, J. and Curtiss, L.A., J. Phys. Chem. C, 2009, vol. 113, p. 21789.CrossRefGoogle Scholar
  9. 9.
    Antonio, P.A.M., J. Phys. Chem. C, 2008, vol. 112, p. 18061.CrossRefGoogle Scholar
  10. 10.
    Pham, V.N., Tai, T.B., and Minh, T.N., J. Chem. Phys., 2012, vol. 137, p. 164312.CrossRefGoogle Scholar
  11. 11.
    Liu, C.Y., Tan, Y.Z., Lin, S.S., et al., J. Am. Chem. Soc., 2013, vol. 135, p. 2583.CrossRefGoogle Scholar
  12. 12.
    Ligthart, D.A.J.M., Santen, R.A., and Hensen, E.J.M., Angew. Chem., 2011, vol. 123, p. 5418.CrossRefGoogle Scholar
  13. 13.
    Jason, R.G., Riva, A., Eric, J.P., et al., Catalysis, 2013, vol. 3, p. 846.Google Scholar
  14. 14.
    Kaden, W.E., Kunke, W.A., Roberts, F.S., et al., J. Chem. Phys., 2012, vol. 136, p. 204705.CrossRefGoogle Scholar
  15. 15.
    Kalita, B. and Deka, R.C., J. Am. Chem. Soc., 2009, vol. 131, p. 13252.CrossRefGoogle Scholar
  16. 16.
    Diana, V., Christian, S., Yuri, S.A., et al., Angew. Chem., 2012, vol. 51, p. 10041.CrossRefGoogle Scholar
  17. 17.
    Ajay, M.J., Mark, H.T., Delgass, W.N., and Thomson, K.T., J. Chem. Phys., 2006, vol. 125, p. 194707.CrossRefGoogle Scholar
  18. 18.
    Gao, F., Wang, Y.L., and Goodman, D.W., J. Phys. Chem. C, 2010, vol. 114, p. 4036.CrossRefGoogle Scholar
  19. 19.
    Xu, J., White, T., Li, P., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 10398.CrossRefGoogle Scholar
  20. 20.
    Gobal, F., Arab, R., and Nahali, M., J. Mol. Struct.: THEOCHEM, 2010, vol. 959, p. 15.CrossRefGoogle Scholar
  21. 21.
    Araña, J., Piscina, P.R., Llorca, J., et al., Chem. Mater., 1998, vol. 10, p. 1333.CrossRefGoogle Scholar
  22. 22.
    Johánek, V., Stará, I., and Matolín, V., Surf. Sci., 2002, vol. 507, p. 92.CrossRefGoogle Scholar
  23. 23.
    Johánek, V., Tsud, N., Matolín, V., and Stará, I., Vacuum, 2001, vol. 63, p. 15.CrossRefGoogle Scholar
  24. 24.
    Matolínová, I., Johánek, V., Tomáš, S., et al., App. Surf. Sci., 2005, vol. 245, p. 87.CrossRefGoogle Scholar
  25. 25.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 03, Rev. B. 04, Pittsburgh, PA: Gaussian, 2003.Google Scholar
  26. 26.
    John, P.P., Kieron, B., and Matthias, E., Phys. Rev. Lett., 1996, vol. 77, p. 3865.CrossRefGoogle Scholar
  27. 27.
    Hay, P.J. and Willard, R.W., J. Chem. Phys., 1985, vol. 82, p. 270.CrossRefGoogle Scholar
  28. 28.
    Hay, P.J. and Willard, R.W., J. Chem. Phys., 1985, vol. 82, p. 299.CrossRefGoogle Scholar
  29. 29.
    Peng, C.Y., Ayala, P.Y., and Schlege, H.B., J. Comp. Chem., 1996, vol. 17, p. 49.CrossRefGoogle Scholar
  30. 30.
    Carlos, G. and Schlege, H.B., J. Chem. Phys., 1989, vol. 90, p. 2154; Carlos, G. and Schlege, H., J. Chem. Phys., 1990, vol. 54, p. 5523.CrossRefGoogle Scholar
  31. 31.
    Huber, K.P. and Herzberg, G., Constants of Diatomic Molecules, New York: Van Nostrand Reinhold, 1979.CrossRefGoogle Scholar
  32. 32.
    Michael, D.M., Chem. Rev., 1986, vol. 86, p. 1049.CrossRefGoogle Scholar
  33. 33.
    Lin, S.S., Strauss, B., and Kant, A., J. Chem. Phys., 1969, vol. 51, p. 2282.CrossRefGoogle Scholar
  34. 34.
    Rosen, B., New York: Oxford Univ. Press, 1970.Google Scholar
  35. 35.
    Xie, Y.P. and Gong, X.G., J. Chem. Phys., 2010, vol. 132, p. 244302.CrossRefGoogle Scholar
  36. 36.
    Peng, S.L., Gan, L.Y., Tian, R.Y., and Zhao, Y.J., Comput. Theor. Chem., 2011, vol. 977, p. 62.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Zhaoru Cao
    • 1
  • Ling Guo
    • 1
  • Ningning Ren
    • 1
  • Naying Liu
    • 1
  • Wenli Li
    • 1
  • Xiaoli Zheng
    • 1
  • Yayin Shi
    • 1
  • Juan Guo
    • 1
  • Yaru Xi
    • 1
  1. 1.School of Chemistry and Material Science, School of Modern Arts and SciencesShanxi Normal UniversityLinfenChina

Personalised recommendations