The structure and composition of iron nanoparticles stabilized by carboxymethyl chitin resulting from ultrasonic irradiation

  • L. N. Shirokova
  • V. A. Alexandrova
  • A. A. Revina
Nanoscale and Nanostructured Materials and Coatings


The methods of sonochemistry and “green” nanotechnology were used to develop a single-stage process to transfer iron nanoparticles from their micellar solution in isooctane to aqueous solution of carboxymethyl chitin excluding an intermediate stage of producing iron nanoparticulate dispersion in water. The structure and dimensions of iron nanoparticles in a macromolecular system based on 6-O-carboxymethyl chitin were examined using X-ray microanalysis and selected-area electron diffraction analysis, transmission electron microscopy (TEM), and atomic force microscopy (AFM). According to TEM and AFM data, the sizes of ultradispersed particles were within the range of 2–4 nm. The X-ray investigations indicated that iron nanonoparticles in the carboxymethyl chitin–iron nanoparticles system consisted mainly of zero-valent alpha-iron particles (α-Fe0) and a number of magnetite Fe3O4 nanoparticles. Because both types of particles exhibit magnetic properties, these metal–polymer nanocomposites may have a wide range of applications in medicine, electronics, biotechnology, ecology, and catalysis.


Chitin Isooctane Micellar Solution Ultrasonic Irradiation Iron Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jayakumar, R., Menon, D., Manzoor, K., et al., Carbohydr. Polym.,, 2010, vol. 82, p. 227.CrossRefGoogle Scholar
  2. 2.
    Shukla, S.K., Mishra, A.K., Arotiba, O.A., and Mamba, B.B., Int. J. Biol. Macromol.,, 2013, vol. 59, p. 46.CrossRefGoogle Scholar
  3. 3.
    Jayakumar, R., Prabaharan, M., Nair, S., et al., Prog. Mater Sci.,, 2010, vol. 55, p. 675.CrossRefGoogle Scholar
  4. 4.
    Zhang, W., J. Nanopart. Res., 2003, vol. 5, nos. 3–4, p. 323.CrossRefGoogle Scholar
  5. 5.
    Karlsson, M.N.A., Deppert, K., Wacaser, B.A., et al., Appl. Phys. A: Mater. Sci. Process,, 2005, vol. 80, p. 1579.CrossRefGoogle Scholar
  6. 6.
    Ibrahem, Moghny, T.A., Mustafa, Y.M., et al., ISRN Soil Sci., 2012, vol. 2012, art. ID 270830.Google Scholar
  7. 7.
    Cirtiu, C.M., Raychoudhury, T., Ghoshal, S., and Moores, A., Colloids Surf., A,, 2011, vol. 390, p. 95.CrossRefGoogle Scholar
  8. 8.
    Lv, X., Jiang, G., Xue, X., et al., J. Hazard. Mater.,, 2013, vol. 262, p. 748.CrossRefGoogle Scholar
  9. 9.
    Wang, X., Le, L., Alvarez, P.J.J., et al., J. Taiwan Inst. Chem. Eng.,, 2015, vol. 50, p. 297.CrossRefGoogle Scholar
  10. 10.
    Kim, H., Hong, H.-J., Jung, J., et al., J. Hazard. Mater.,, 2010, vol. 176, p. 1038.CrossRefGoogle Scholar
  11. 11.
    Ding, Q., Qian, T., Liu, H., and Wang, X., Appl. Mech. Mater., 2011, vols. 55–57, p. 1748.CrossRefGoogle Scholar
  12. 12.
    Suguna, M., Kumar, N., Sreenivasulu, V., and Krishnaiah, A., Sep. Sci. Technol.,, 2014, vol. 49, p. 1613.CrossRefGoogle Scholar
  13. 13.
    Kustov, L.M., Finashina, E.D., Shuvalova, E.V., et al., Environ. Int.,, 2011, vol. 37, p. 1044.CrossRefGoogle Scholar
  14. 14.
    Petit, C., Lixon, P., and Pileni, M.-P., J. Phys. Chem.,, 1993, vol. 97, p. 12974.CrossRefGoogle Scholar
  15. 15.
    Wu, L., Shamsuzzoha, M., and Ritchie, S.M.C., J. Nanopart. Res., 2005, vol. 7, nos. 4–5, p. 469.CrossRefGoogle Scholar
  16. 16.
    Maneerung, T., Tokura, S., and Rujiravanit, R., Carbohydr. Polym.,, 2008, vol. 72, p. 43.CrossRefGoogle Scholar
  17. 17.
    Revina, A.A., RF Patent 2312741, 2007.Google Scholar
  18. 18.
    Wongpanti, P., Sanchavanakit, N., Supaphol, P., et al., Macromol. Biosci.,, 2005, vol. 5, p. 1001.CrossRefGoogle Scholar
  19. 19.
    Revina, A.A., Daineko, S.V., Bol’shakova, A.N., et al., Naukoemkie Tekhnol., 2011, vol. 12, no. 6, p. 68.Google Scholar
  20. 20.
    Martin-Aranda, R.M. and Calvino-Casilda, V., Recent Pat. Chem. Eng.,, 2010, vol. 3, p. 82.Google Scholar
  21. 21.
    Miethchen, R., Ultrasonics,, 1992, vol. 30, p. 173.CrossRefGoogle Scholar
  22. 22.
    Suslick, K.S., Doktycz, S.J., and Flint, E.B., Ultrasonics,, 1990, vol. 28, p. 280.CrossRefGoogle Scholar
  23. 23.
    Shvetsov, A.A., Lebedeva, M.V., and Revina, A.A., Usp. Khim. Khim. Tekhnol., 2012, vol. 26, no. 7, p. 18.Google Scholar
  24. 24.
    Shirokova, L.N., Alexandrova, V.A., Egorova, E.M., and Vihoreva, G.A., Appl. Biochem. Microbiol.,, 2009, vol. 45, p. 422.CrossRefGoogle Scholar
  25. 25.
    Alexandrova, V.A., Shirokova, L.N., and Revina, A.A., Polym. Sci., Ser. B, 2010, vol. 52, no. 9–10, p. 621.CrossRefGoogle Scholar
  26. 26.
    Naja, G., Halasz, A., Thiboutot, S., et al., Environ. Sci. Technol.,, 2008, vol. 42, p. 4364.CrossRefGoogle Scholar
  27. 27.
    Balamurugan, D., Udayasooriyan, C., Vinoth Kumar, K., et al., Environ. Ecol. Res.,, 2014, vol. 2, p. 291.Google Scholar
  28. 28.
    Laurent, S., Forge, D., Port, M., et al., Chem. Rev.,, 2008, vol. 108, p. 2064.CrossRefGoogle Scholar
  29. 29.
    Cárdenas, G., Cabrera, G., Taboada, E., and Miranda, S., J. Appl. Polym. Sci.,, 2004, vol. 93, p. 1876.CrossRefGoogle Scholar
  30. 30.
    Muzzarelli, R.A.A., Chitin, Oxford, UK: Pergamon, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • L. N. Shirokova
    • 1
  • V. A. Alexandrova
    • 1
  • A. A. Revina
    • 2
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of ScienceMoscowRussia

Personalised recommendations