Skip to main content
Log in

Structure and properties of nanocomposite Mo—Si—B—(N) coatings

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Coatings in the Mo—Si—B—(N) system are obtained using the magnetron sputtering method. Control of nitrogen and silicon content in the coatings is carried out using various gaseous Ar + N2 mixtures and variation of the number of Si segments in the area of MoSiB target erosion. The structure of coatings is studied using methods of scanning and transmission electron microscopy, X-ray analysis, infrared and optical emission spectroscopy, and Raman spectroscopy. Mechanical and tribological properties of the coatings are determined using methods of nanoindentation, scratch-testing, and tribological testing at temperatures of 25, 500, and 700°C. The oxidation resistance of coatings is studied. It is established that coatings with maximum Si and N content possess the best properties: hardness of 32 GPa, elastic recovery of 66%, low friction coefficient at high temperatures, and heat resistance up to 1200°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chim, Y.C., Ding, X.Z., Zeng, X.T., and Zhang, S., Thin Solid Films, 2009, vol. 517, p. 4845.

    Article  Google Scholar 

  2. Deng, J., Wu, F., Lian, Y., et al., Int. J. Refract. Met. Hard Mater., 2012, vol. 35, p. 10.

    Article  Google Scholar 

  3. Valerini, D., Signore, M.A., Tapfer, L., et al., Thin Solid Films, 2013, vol. 538, p. 42.

    Article  Google Scholar 

  4. Milošev, I., Strehblow, H.-H., and Navinšek, B., Thin Solid Films, 1997, vol. 303, p. 246.

    Article  Google Scholar 

  5. Kiryukhantsev-Korneev, Ph. V., Sheveyko, A. N., Kuptsov, K. A., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 6, p. 677.

    Article  Google Scholar 

  6. Shtansky, D.V., Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., et al., Surf. Coat. Technol., 2011, vol. 205, p. 4640.

    Article  Google Scholar 

  7. Heo, S.J., Kim, K.H., Kang, M.C., et al., Surf. Coat. Technol., 2006, vol. 201, p. 4180.

    Article  Google Scholar 

  8. Suszko, T., Gulbinski, W., Jagielski, J., et al., Surf. Coat. Technol., 2005, vol. 194, p. 319.

    Article  Google Scholar 

  9. Solak, N., Ustel, F., Urgen, M., et al., Surf. Coat. Technol., 2003, vols. 174–175, p. 713.

    Article  Google Scholar 

  10. Cunha, L., Rebouta, L., Vaz, F., et al., Vacuum, 2008, vol. 82, p. 1428.

    Article  Google Scholar 

  11. Heo, S.J., Kim, K.H., Kang, M.C., et al., Surf. Coat. Technol., 2006, vol. 201, p. 4180.

    Article  Google Scholar 

  12. Musil, J., Dohnal, P., and Zeman, P., J. Vac. Sci. Technol., B, 2005, vol. 23, p. 1568.

    Article  Google Scholar 

  13. Yang, J.F., Yuan, Z.G., Liu, Q., et al., Mater. Res. Bull., 2009, vol. 44, p. 86.

    Article  Google Scholar 

  14. Yang, J.F., Yuan, Z.G., Zhang, G.G., et al., Mater. Res. Bull., 2009, vol. 44, p. 1948.

    Article  Google Scholar 

  15. Benda, M. and Musil, J., Vacuum, 1999, vol. 55, p. 171

    Article  Google Scholar 

  16. Jung, H.S., Qi, M.W., Kwang, H.K., and Shin, J.H., Mater. Chem. Phys., 2011, vol. 130, p. 870.

    Article  Google Scholar 

  17. Shtansky, D.V., Levashov, E.A., Sheveiko, A.N., and Moore, J.J., J. Mater. Synth. Process., 1998, vol. 6, p. 61.

    Article  Google Scholar 

  18. Kiryukhantsev-Korneev, F.V., Petrzhik, M.I., Sheveiko, A.N., et al., Phys. Met. Metall., 2007, vol. 104, p. 167.

    Article  Google Scholar 

  19. Shtansky, D.V., Levashov, E.A., Sheveiko, A.N., and Moore, J.J., J. Mater. Synth. Process., 1999, vol. 7, p. 187.

    Article  Google Scholar 

  20. Kiryukhantsev-Korneev, F.V., Shirmanov, N.A., Sheveiko, A.N., et al., Russ. Eng. Res., 2010, vol. 30, p. 909.

    Article  Google Scholar 

  21. Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., et al., Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Prospective Materials and Technologies of Self-Propagating High-Temperature Synthesis), Moscow: Nats. Issled. Tekhnol. Univ., 2011.

    Google Scholar 

  22. Levashov, E.A., Pogozhev, Yu.S., Potanin, A.Yu., et al., Ceram. Int., 2014, vol. 40, p. 6541.

    Article  Google Scholar 

  23. Zeman, P., Čapek, J., Čerstvý, R., and Vlek, J., Thin Solid Films, 2010, vol. 519, p. 306.

    Article  Google Scholar 

  24. Kiryukhantsev-Korneev, Ph.V., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 5, p. 585.

    Article  Google Scholar 

  25. Levashov, E.A., Shtansky, D.V., Kiryukhantsev-Korneev, Ph.V., et al., Russ. Metall., 2010, vol. 10, p. 917.

    Article  Google Scholar 

  26. Yuan, Z.G., Yang, J.F., and Wang, X.P., Surf. Coat. Technol., 2011, vol. 205, p. 3307.

    Article  Google Scholar 

  27. Musil, J. and Zeman, P., Solid State Phenom., 2007, vol. 127, p. 31.

    Article  Google Scholar 

  28. Huh, Y., Hong, K., and Shin, K., Microsc. Microanal., 2013, vol. 5, p. 33.

    Article  Google Scholar 

  29. Mehboob Sadiq, S., Ahmad, M., Shafiq, M., and Zakaullah, M., Nucl. Instrum. Methods Phys. Res., Sect. B, vol. 252, p. 219.

  30. Sun, J., Xiong, R., Wang, S., et al., J. Sol-Gel Sci. Technol., 2003, vol. 27, no. 3, p. 315.

    Article  Google Scholar 

  31. Choi, J., Hayashi, N., Kato, T., and Kawaguchi, M., Diamond Relat. Mater., 2013, vol. 34, p. 95.

    Article  Google Scholar 

  32. Rabaa Bousbih, Wissem Dimassi, Ikbel Haddadi, et al., Sol. Energy, 2012, vol. 86, p. 1300.

    Article  Google Scholar 

  33. Selvakumar, N., Jinnah Sheik Mohamed, Narayanasamy, R., and Venkateswarlu, K., Mater. Des., 2013, vol. 52, p. 393.

    Article  Google Scholar 

  34. Shtanskii, D.V., Levashov, E.A., Kulinich, S.A., and Moore, J.J., Phys. Solid State, 2003, vol. 45, no. 6, p. 1177.

    Article  Google Scholar 

  35. Shtansky, D.V., Kulinich, S.A., Levashov, E.A., et al., Thin Solid Films, 2002, vol. 324, p. 420.

    Google Scholar 

  36. Abu Samra, H., Staedler, T., Aronov, I., et al., Surf. Coat. Technol., 2010, vol. 204, p. 1919.

    Article  Google Scholar 

  37. Jantschner, O., Field, S.K., Music, D., et al., Tribol. Int., 2014, vol. 77, p. 15.

    Article  Google Scholar 

  38. He, J.L., Miyake, S., Setsuhara, Y., et al., Wear, 2001, vol. 249, p. 498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. V. Kiryukhantsev-Korneev.

Additional information

Original Russian Text © F.V. Kiryukhantsev-Korneev, A.V. Bondarev, D.V. Shtansky, E.A. Levashov, 2015, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2015, Vol. 51, No. 5, pp. 503–511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiryukhantsev-Korneev, P.V., Bondarev, A.V., Shtansky, D.V. et al. Structure and properties of nanocomposite Mo—Si—B—(N) coatings. Prot Met Phys Chem Surf 51, 794–802 (2015). https://doi.org/10.1134/S2070205115050160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115050160

Keywords

Navigation