Individual and combined effects of fluid flow and inhibitor concentration on inhibition of St-37 steel corrosion using K3PO4 in neutral solution

  • H. Ashassi-Sorkhabi
  • E. Asghari
  • S. Z. Mozaffari
Physicochemical Problems of Materials Protection


Most of the common inhibitors that are used commercially to control the corrosion of steel in neutral solutions are not environmentally friendly. Therefore, use of inhibitors with low toxicities is preferred in industries. The phosphates are inorganic inhibitors with relatively low toxicity that are used in different applications. The solution hydrodynamics is also one of major factors that influence the corrosion behavior of metals and the performance of inhibitors in corrosive systems. Present work is a systematic investigation of the combined effects of inhibitor concentration and hydrodynamic conditions on the electrochemical corrosion behavior of St37 steel in 3.5% NaCl solution containing potassium phosphate. The obtained results showed that behavior of phosphate under hydrodynamic conditions is influenced significantly by its concentration. When the phosphate concentration was relatively high (5 mM), the inhibition efficiencies were not changed by variation of electrode rotation speed. It was attributed to the little influence of hydrodynamic conditions on stability of the protective layers formed on metal surface. It was also observed that at lower phosphate concentrations (less than 1 mM), the inhibitor performance decreased significantly applying hydrodynamic conditions due to the formation of frail and weak protective films on metal surface.


Inhibition Efficiency Corrosion Current Density Hydrodynamic Condition Rotate Disc Electrode Steel Corrosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matsushima, I., Uhling’s Corrosion Handbook. Carbon Steel-Corrosion in Sea Water, Winston, R., Ed., New York: Wiley, 1985, 2nd ed.Google Scholar
  2. 2.
    Sridhar, N., Brossia, C., Dum, D., and Anderko, A., Corrosion, 2004, vol. 60, p. 915.CrossRefGoogle Scholar
  3. 3.
    Vukovic, M., Hydrometallurgy, 1996, vol. 42, p. 387.CrossRefGoogle Scholar
  4. 4.
    Oh, S.J., Cook, D.C., and Townsend, H.E., Corros. Sci., 1999, vol. 41, p. 1687.CrossRefGoogle Scholar
  5. 5.
    Bonnel, A., Dabosi, F., Deslouis, C., et al., J. Electrochem. Soc., 1983, vol. 130, p. 753.CrossRefGoogle Scholar
  6. 6.
    Achary, G. and Naik, Y., J. Chem., 2013, p. 6.Google Scholar
  7. 7.
    Li, S., Ni, L., Sung, C., and Wang, L., Corros. Sci., 2004, vol. 46, p. 137.CrossRefGoogle Scholar
  8. 8.
    Laamari, M., Derja, A., Benzakour, J., and Berraho, M., J. Electroanal. Chem., 2004, vol. 569, p. 1.CrossRefGoogle Scholar
  9. 9.
    Touir, R., Dkhireche, N., Ebn Touhami, M., et al., Mate. Chem. Phys., 2010, vol. 122, p. 1.CrossRefGoogle Scholar
  10. 10.
    Ochoa, N., Moran, F., Pébère, N., and Tribollet, B., Corros. Sci., 2005, vol. 47, p. 593.CrossRefGoogle Scholar
  11. 11.
    Zin, M., Lyon, S., and Pokhmurskii, V., Corros. Sci., 2003, vol. 45, p. 777.CrossRefGoogle Scholar
  12. 12.
    Kear, G., Barker, B., Stokes, K., and Walsh, F., J. Appl. Electrochem., 2004, vol. 34, p. 659.CrossRefGoogle Scholar
  13. 13.
    Refaey, S., Abd El-Rehim, S., Taha, F., et al., Appl. Surf. Sci., 2000, vol. 158, p. 190.CrossRefGoogle Scholar
  14. 14.
    Refaey, S., Appl. Surf. Sci., 2005, vol. 240, p. 396.CrossRefGoogle Scholar
  15. 15.
    Kear, G., Barker, B., Stokes, K., and Walsh, F., J. Appl. Electrochem., 2004, vol. 34, p. 1235.CrossRefGoogle Scholar
  16. 16.
    Wharton, J., Barik, R., Kear, G., et al., Corros. Sci., 2005, vol. 47, p. 3336.CrossRefGoogle Scholar
  17. 17.
    Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Russ. J. Electrochem., 2006, vol. 42, p. 370.CrossRefGoogle Scholar
  18. 18.
    Sidorin, D., Pletcher, D., and Hedges, B., Electrochim. Acta, 2005, vol. 50, p. 4109.CrossRefGoogle Scholar
  19. 19.
    Maciel, J.M. and Agostinho, S.M., J. Appl. Electrochem., 2000, vol. 30, p. 981.CrossRefGoogle Scholar
  20. 20.
    Roberge, P. and Beaudion, R., J. Appl. Electrochem., 1988, vol. 18, p. 601.CrossRefGoogle Scholar
  21. 21.
    Caceres, L., Vargas, T., and Herrera, L., Corros. Sci., 2007, vol. 49, p. 3168.CrossRefGoogle Scholar
  22. 22.
    Bommersbach, P., Alemandy-Dumont, C., Millet, J., and Normand, B., Electrochim. Acta, 2006, vol. 51, p. 4011.CrossRefGoogle Scholar
  23. 23.
    Musa, A.Y., Kadhum, A.A., Mohamad, A.B., et al., Int. J. Electrochem. Sci., 2009, vol. 4, p. 707.Google Scholar
  24. 24.
    Ashassi-Sorkhabi, H. and Asghari, E., Corros. Sci., 2009, vol. 51, p. 1828.CrossRefGoogle Scholar
  25. 25.
    Tait, W.S., An Introduction to Electrochemical Corrosion Testing for Practicing Engineers, Scientists, Paris: ParisODocs Publ., 1994.Google Scholar
  26. 26.
    Hancock, P. and Mayne, J., J. Appl. Chem., 1959, vol. 9, p. 345.CrossRefGoogle Scholar
  27. 27.
    Es-Salah, K., Keddam, M., Rahmouni, K., et al., Electrochim. Acta, 2004, vol. 49, p. 2771.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • H. Ashassi-Sorkhabi
    • 1
  • E. Asghari
    • 1
  • S. Z. Mozaffari
    • 1
  1. 1.Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations