Skip to main content
Log in

Individual and combined effects of fluid flow and inhibitor concentration on inhibition of St-37 steel corrosion using K3PO4 in neutral solution

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Most of the common inhibitors that are used commercially to control the corrosion of steel in neutral solutions are not environmentally friendly. Therefore, use of inhibitors with low toxicities is preferred in industries. The phosphates are inorganic inhibitors with relatively low toxicity that are used in different applications. The solution hydrodynamics is also one of major factors that influence the corrosion behavior of metals and the performance of inhibitors in corrosive systems. Present work is a systematic investigation of the combined effects of inhibitor concentration and hydrodynamic conditions on the electrochemical corrosion behavior of St37 steel in 3.5% NaCl solution containing potassium phosphate. The obtained results showed that behavior of phosphate under hydrodynamic conditions is influenced significantly by its concentration. When the phosphate concentration was relatively high (5 mM), the inhibition efficiencies were not changed by variation of electrode rotation speed. It was attributed to the little influence of hydrodynamic conditions on stability of the protective layers formed on metal surface. It was also observed that at lower phosphate concentrations (less than 1 mM), the inhibitor performance decreased significantly applying hydrodynamic conditions due to the formation of frail and weak protective films on metal surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsushima, I., Uhling’s Corrosion Handbook. Carbon Steel-Corrosion in Sea Water, Winston, R., Ed., New York: Wiley, 1985, 2nd ed.

  2. Sridhar, N., Brossia, C., Dum, D., and Anderko, A., Corrosion, 2004, vol. 60, p. 915.

    Article  Google Scholar 

  3. Vukovic, M., Hydrometallurgy, 1996, vol. 42, p. 387.

    Article  Google Scholar 

  4. Oh, S.J., Cook, D.C., and Townsend, H.E., Corros. Sci., 1999, vol. 41, p. 1687.

    Article  Google Scholar 

  5. Bonnel, A., Dabosi, F., Deslouis, C., et al., J. Electrochem. Soc., 1983, vol. 130, p. 753.

    Article  Google Scholar 

  6. Achary, G. and Naik, Y., J. Chem., 2013, p. 6.

    Google Scholar 

  7. Li, S., Ni, L., Sung, C., and Wang, L., Corros. Sci., 2004, vol. 46, p. 137.

    Article  Google Scholar 

  8. Laamari, M., Derja, A., Benzakour, J., and Berraho, M., J. Electroanal. Chem., 2004, vol. 569, p. 1.

    Article  Google Scholar 

  9. Touir, R., Dkhireche, N., Ebn Touhami, M., et al., Mate. Chem. Phys., 2010, vol. 122, p. 1.

    Article  Google Scholar 

  10. Ochoa, N., Moran, F., Pébère, N., and Tribollet, B., Corros. Sci., 2005, vol. 47, p. 593.

    Article  Google Scholar 

  11. Zin, M., Lyon, S., and Pokhmurskii, V., Corros. Sci., 2003, vol. 45, p. 777.

    Article  Google Scholar 

  12. Kear, G., Barker, B., Stokes, K., and Walsh, F., J. Appl. Electrochem., 2004, vol. 34, p. 659.

    Article  Google Scholar 

  13. Refaey, S., Abd El-Rehim, S., Taha, F., et al., Appl. Surf. Sci., 2000, vol. 158, p. 190.

    Article  Google Scholar 

  14. Refaey, S., Appl. Surf. Sci., 2005, vol. 240, p. 396.

    Article  Google Scholar 

  15. Kear, G., Barker, B., Stokes, K., and Walsh, F., J. Appl. Electrochem., 2004, vol. 34, p. 1235.

    Article  Google Scholar 

  16. Wharton, J., Barik, R., Kear, G., et al., Corros. Sci., 2005, vol. 47, p. 3336.

    Article  Google Scholar 

  17. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Russ. J. Electrochem., 2006, vol. 42, p. 370.

    Article  Google Scholar 

  18. Sidorin, D., Pletcher, D., and Hedges, B., Electrochim. Acta, 2005, vol. 50, p. 4109.

    Article  Google Scholar 

  19. Maciel, J.M. and Agostinho, S.M., J. Appl. Electrochem., 2000, vol. 30, p. 981.

    Article  Google Scholar 

  20. Roberge, P. and Beaudion, R., J. Appl. Electrochem., 1988, vol. 18, p. 601.

    Article  Google Scholar 

  21. Caceres, L., Vargas, T., and Herrera, L., Corros. Sci., 2007, vol. 49, p. 3168.

    Article  Google Scholar 

  22. Bommersbach, P., Alemandy-Dumont, C., Millet, J., and Normand, B., Electrochim. Acta, 2006, vol. 51, p. 4011.

    Article  Google Scholar 

  23. Musa, A.Y., Kadhum, A.A., Mohamad, A.B., et al., Int. J. Electrochem. Sci., 2009, vol. 4, p. 707.

    Google Scholar 

  24. Ashassi-Sorkhabi, H. and Asghari, E., Corros. Sci., 2009, vol. 51, p. 1828.

    Article  Google Scholar 

  25. Tait, W.S., An Introduction to Electrochemical Corrosion Testing for Practicing Engineers, Scientists, Paris: ParisODocs Publ., 1994.

    Google Scholar 

  26. Hancock, P. and Mayne, J., J. Appl. Chem., 1959, vol. 9, p. 345.

    Article  Google Scholar 

  27. Es-Salah, K., Keddam, M., Rahmouni, K., et al., Electrochim. Acta, 2004, vol. 49, p. 2771.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ashassi-Sorkhabi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashassi-Sorkhabi, H., Asghari, E. & Mozaffari, S.Z. Individual and combined effects of fluid flow and inhibitor concentration on inhibition of St-37 steel corrosion using K3PO4 in neutral solution. Prot Met Phys Chem Surf 51, 651–658 (2015). https://doi.org/10.1134/S2070205115040309

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115040309

Keywords

Navigation