Anisalidine derivatives as corrosion inhibitors of copper in acidic media

Physicochemical Problems of Materials Protection

Abstract

The corrosion inhibitory properties on copper in acidic media by anisalidine derivatives viz. N-(4-nitro phenyl) p-anisalidine (SB1), N-(4-chloro phenyl) p-anisalidine (SB2), N-(4-phenyl) p-anisalidine (SB3), N-(4-methoxy phenyl) p-anisalidine (SB4), N-(4-hydroxy phenyl) p-anisalidine (SB5) have been studied using mass loss method, Langmuir adsorption isotherm and surface analysis by Atomic Force Microscopy (AFM). The inhibition efficiency increases up to 98.99% with increasing additive concentration it may be due to adsorption of the additive molecules on the copper surface.

Keywords

Corrosion Rate Schiff Base Inhibition Efficiency Corrosion Inhibitor Copper Surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sekine, I., Masuko, A., and Senoo, K., Corros. Sci., 1987, vol. 43, p. 553.CrossRefGoogle Scholar
  2. 2.
    Quraishi, M. and Jamal, D., Corros. Sci., 2000, vol. 56, p. 156.CrossRefGoogle Scholar
  3. 3.
    Singh, V.B. and Singh, R.N., Corros. Sci., 1995, vol. 37, p. 1399.CrossRefGoogle Scholar
  4. 4.
    Sekine, I., Hatakeyama, S., and Nakazawa, Y., Corros. Sci., 1987, vol. 7, p. 275.CrossRefGoogle Scholar
  5. 5.
    Muralidhara, S., Quraishi, M., and Iyer, S., Anti-Corros. Methods Mater., 1997, vol. 44, p. 100.CrossRefGoogle Scholar
  6. 6.
    Quraishi, M.A., Khan, M.A.W., and Ajmal, M., Anti-Corros. Methods Mater., 1996, vol. 43, p. 5.CrossRefGoogle Scholar
  7. 7.
    Hammouti, B., Aouniti, M., Taleb, A., and Kertit, S., Corros. Sci., 1995, vol. 51, p. 411.CrossRefGoogle Scholar
  8. 8.
    Khamis Al-Andis, N., Al-Mayouf, A., and Aboul-Enein, H., Corros. Prev. Control, 1995, vol. 42, p. 13.Google Scholar
  9. 9.
    Abd-El-Nabey, Khammis, E., Ramadan, M.S., and Gindy, A.E., Corros. Sci., 1996, vol. 52, p. 671.CrossRefGoogle Scholar
  10. 10.
    Aytac, A., Ozmen, U., and Kabasakaloglu, M., Mater. Chem. Phys., 2005, vol. 89, p. 176.CrossRefGoogle Scholar
  11. 11.
    Liu, G.Q., Zhu, Z.Y., Ke, W., et al., Corrosion, 2001, vol. 57, p. 730.CrossRefGoogle Scholar
  12. 12.
    Collins, W.D., Weyers, R.E., and Al-Qadi, I.L., Corrosion, 1993, vol. 49, p. 74.CrossRefGoogle Scholar
  13. 13.
    Ekpe, U.J., Ibok, U., Ita, B.I., et al., Mater. Chem. Phys., 1995, vol. 40, p. 87.CrossRefGoogle Scholar
  14. 14.
    Sethi, T., Chaturvedi, A., Upadhyay, R., and Mathur, S., J. Chil. Chem. Soc., 2007, vol. 52, p. 1206.CrossRefGoogle Scholar
  15. 15.
    Sethi, T., Chaturvedi, A., Upadhyay, R., and Mathur, S., Pol. J. Chem., 2008, vol. 82, p. 591.Google Scholar
  16. 16.
    Waranglen, G., Introduction to Corrosion, Protection of Metals, London: Chapman Hall, 1985.CrossRefGoogle Scholar
  17. 17.
    Talati, J.D. and Gandhi, D.K., Indian J. Tech., 1991, vol. 29, p. 277.Google Scholar
  18. 18.
    Sharma, M., Kumar, S., Ratnani, R., and Mathur, S., Bull. Electrochem., 2006, vol. 22, p. 69.Google Scholar
  19. 19.
    Hoar, T.P. and Holliday, R.D., J. Appl. Chem., 1953, vol. 3, p. 582.Google Scholar
  20. 20.
    Hoar, T.P., Corros. Sci., 1967, vol. 7, p. 455.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of Pure and Applied ChemistryMaharshi Dayanand Saraswati UniversityAjmerIndia

Personalised recommendations