Complexes of poly-3,4-ethylenedioxythiophene with polymeric sulfonic acids of different structures: Synthesis and optical and electric properties

  • O. L. Gribkova
  • N. E. Mitina
  • A. A. Nekrasov
  • V. F. Ivanov
  • V. A. Tverskoi
  • A. R. Tameev
  • A. V. Vannikov
Molecular and Supramolecular Structures at the Interfaces
  • 60 Downloads

Abstract

Chemical polymerization of 3,4-ethylenedioxythiophene is carried out in the presence of polymeric sulfonic acids of different structures, such as flexible-chain polyacids with a uniform distribution of sulfonic acid groups along the macromolecular chain, namely, polystyrene sulfonic (PSSA) and poly-2-acrylamido-2-methyl-1-propanesulfonic (PAMPSA) acids, and rigid-chain polysulfonic acid with a nonuniform distribution of sulfonic acid groups along the macromolecular chain—namely, poly-p,p′-(2,2′-disulfonic acid)-diphenylene terephthalamide. The polymerization process and the properties of solutions and films of the synthesized complexes of poly-3,4-ethylenedioxythiophene (PEDOT) with the above polyacids are studied by the UV, visible, and near-IR spectroscopy. The electric properties of the films are investigated. The effects of the concentration ratio between the oxidizer and monomer and of the structure of polymeric acid on the kinetics of the PEDOT synthesis, as well as on the spectral and electric properties of the obtained polymer, are revealed. A correlation between the absorption of the PEDOT/PSSA complexes in the near-IR range and their specific conductivity is established.

Keywords

Sulfonic Acid Group PASA Chemical Oxidative Polymerization PEDOT Film Ethylenedioxythiophene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayer AG, EU Patent 440957, 1991.Google Scholar
  2. 2.
    Agfa Gevaert, EU Patent 564911, 1993.Google Scholar
  3. 3.
    Jonas, F., Krafft, W., and Muys, B., Macromol. Symp., 1995, vol. 100, p. 169.CrossRefGoogle Scholar
  4. 4.
    Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R., Adv. Mater., 2000, vol. 12, no. 7, p. 481.CrossRefGoogle Scholar
  5. 5.
    Lindell, L., Burquel, A., and Jakobsson, F.L.E., Chem. Mater., 2006, vol. 8, p. 4246.CrossRefGoogle Scholar
  6. 6.
    Tengstedt, C., Crispin, A., Hsu, C.-H., Zhang, C., Parker, I.D., Salaneck, W.R., and Fahlman, M., Org. Electron., 2005, vol. 6, p. 21.CrossRefGoogle Scholar
  7. 7.
    Konoshchuk, N.V., Posudievsky, O.Y., Gribkova, O.L., Nekrasov, A.A., Vannikov, A.V., Koshechko, V.H., and Pokhodenko V.D., Theor. Exp. Chem., 2014, vol. 50, no. 1, pp. 21–28.CrossRefGoogle Scholar
  8. 8.
    Choi, J.W., Han, M.G., Kim, S.Y., Oh, S.G., and Im, S.S., Synth. Met., 2004, vol. 141, p. 293.CrossRefGoogle Scholar
  9. 9.
    Qiu, C.C., Wang, J.K., Mao, S.M., Guo, W.H., Cheng, S.J., and Wang, Y.X., Polym. Adv. Technol., 2010, vol. 21, p. 651.CrossRefGoogle Scholar
  10. 10.
    Wang, Y.Y., Cai, K.F., and Yao, X., ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 1163.CrossRefGoogle Scholar
  11. 11.
    Bubnova, O., Khan, Z.U., Malti, A., Braun, S., Fahlman, M., Berggren, M., and Crispin, X., Nat. Mater., 2011, vol. 10, p. 429.CrossRefGoogle Scholar
  12. 12.
    Corradi, R. and Armes, S. P., Synth. Met., 1997, vol. 84, p. 453.CrossRefGoogle Scholar
  13. 13.
    Seo, K.I. and Chung, I.J., Polymer, 2000, vol. 41, p. 4491.CrossRefGoogle Scholar
  14. 14.
    Kirsh, Yu.E., Fedotov, Yu.A., Iudina, N.A., et al., Vysokomol. Soedin., Ser. A, 1991, vol. 33, no. 5, p. 1127.Google Scholar
  15. 15.
    Omelchenko, O.D., Gribkova, O.L., Tameev, A.R., and Vannikov, A.V., Tech. Phys. Lett., 2014, vol. 40, no. 9, pp. 807–809.CrossRefGoogle Scholar
  16. 16.
    Omelchenko, O.D., Gribkova, O.L., Tameev, A.R., Novikov, S.V., and Vannikov, A.V., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 5, pp. 613–619.CrossRefGoogle Scholar
  17. 17.
    Guseva, M.A., Isakova, A.A., Grib-kova, O.L., Tverskoi, V.A., Ivanov, V.F., Vannikov, A.V., and Fedotov, Yu.A., Polym. Sci., Ser. A, 2007, vol. 49, no. 1, pp. 4–11.CrossRefGoogle Scholar
  18. 18.
    Tolstopyatova, E.G., Pogulaichenko, N.A., Eliseeva, S.N., and Kondratiev, V.V., Russ. J. Electrochem., 2009, vol. 45, no. 3, pp. 252–262.CrossRefGoogle Scholar
  19. 19.
    Chen, X. and Inganas, O., J. Phys. Chem., 1996, vol. 100, p. 15202.CrossRefGoogle Scholar
  20. 20.
    Lapkowski, M. and Pron, A., Synth. Met., 2000, vol. 110, p. 79.CrossRefGoogle Scholar
  21. 21.
    Ahonen, H.J., Lukkari, J., and Kankre, J., Macromolecules (Washington), 2000, vol. 33, p. 6787.CrossRefGoogle Scholar
  22. 22.
    Tan, J.S. and Marcus, P.R., J. Polym. Sci., Polym. Phys. Ed., 1976, vol. 14, p. 239.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. L. Gribkova
    • 1
  • N. E. Mitina
    • 2
  • A. A. Nekrasov
    • 1
  • V. F. Ivanov
    • 1
  • V. A. Tverskoi
    • 2
  • A. R. Tameev
    • 1
  • A. V. Vannikov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia
  2. 2.Moscow State University of Fine Chemical TechnologiesMoscowRussia

Personalised recommendations