Surface activity of sodium chloride in aqueous solutions of dimethylformamide

Physicochemical Processes at the Interfaces


The surface tensions of solutions of sodium chloride in water and aqueous solutions of dimethylformamide (DMF) were measured in the range of solute concentrations of up to 1 mol/kg at 298 and 303 K. It was found that the concentration dependence of the surface tension of the electrolyte solution has an extreme character regardless of the solvent nature. The dependences obtained are discussed from the standpoint of the effect of solute solvation processes on the adsorption, the composition of surface layers, and the surface activity of a solution.


Surface Tension Molar Fraction Surface Activity Sodium Chloride Preferential Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fedorova, A.A. and Ulitin, M.V., Russ. J. Phys. Chem. A, 2009, vol. 83, no. 1, pp. 98–102.CrossRefGoogle Scholar
  2. 2.
    Fedorova, A.A. and Ulitin, M.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2007, vol. 50, no. 12, p. 37.Google Scholar
  3. 3.
    Randles, J.E.B. and Schiffrin, D.J., Trans. Faraday Soc., 1966, vol. 62, p. 2403.CrossRefGoogle Scholar
  4. 4.
    Adamson, A., The Physical Chemistry of Surfaces, New York: Wiley, 1967, 2nd ed.Google Scholar
  5. 5.
    Spravochnik khimika (Handbook of Chemist), Nikol’skii, B.P., Ed., Leningrad: Khimiya, 1965, vol. 2, pp. 88, 146, 242.Google Scholar
  6. 6.
    Rabinovich, V.A., Termodinamicheskaya aktivnost’ ionov v rastvorakh elektrolitov (Thermodynamic Activity of Ions in Electrolytic Solutions), Leningrad: Khimiya, 1985.Google Scholar
  7. 7.
    Lopatkin, A.A., Teoreticheskie osnovy fizichekoi adsorbtsii (Theoretical Principles of Physical Absorption), Moscow: Mosk. Gos. Univ., 1983, p. 75.Google Scholar
  8. 8.
    Krestov, G.A., Termodinamika ionnykh protsessov v rastvorakh (Thermodynamics of Ionic Processes in Solutions), Moscow: Khimiya, 1984, p. 94.Google Scholar
  9. 9.
    Dubinin, M.M., Dokl. Akad. Nauk SSSR, 1952, vol. 84, p. 539.Google Scholar
  10. 10.
    Nosach, V.V., Reshenie zadach approksimatsii s pomoshch’yu personal’nykh komp’yuterov (Computing Approximation Task Solution), Moscow: Mikap, 1994, p. 236.Google Scholar
  11. 11.
    Absorption from Solution at the Solid Liquid Interface, Parfitt, G.D. and Rochester, C.H., Eds., Orlando: Academic, 1983.Google Scholar
  12. 12.
    Krestov, G.A., Novoselov, N.O., Perelygin, I.S., et al., Ionnaya sol’vatatsiya (Ionic Solvation), Moscow: Nauka, 1987.Google Scholar
  13. 13.
    Mishustin, A.I. and Kessler, Yu.M., J. Struct. Chem., 1974, vol. 15, no. 2, pp. 191–194.CrossRefGoogle Scholar
  14. 14.
    Kessler, Yu.M., Mishustin, A.I., Yastremskii, P.S., Verstakov, E.S., and Emelin, V.P., J. Struct. Chem., 1975, vol. 16, no. 1, pp. 113–114.CrossRefGoogle Scholar
  15. 15.
    Pukhovskii, Yu.P., Sakharov, D.V., and Safonova, L.P., J. Struct. Chem., 2002, vol. 43, no. 2, pp. 284–292.CrossRefGoogle Scholar
  16. 16.
    Finter, C.K. and Hertz, H.G., J. Chim. Phys. Phys. Chim. Biol., 1988, vol. 85, p. 589.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Ivanovo State University of Chemical TechnologyIvanovoRussia

Personalised recommendations