Advertisement

Comprehensive study of the behavior of copper inhibition in 1 M HNO3 by Euphorbia Helioscopia linn. extract as green inhibitor

  • Y. M. Abdallah
  • K. Shalabi
Physicochemical Problems of Materials Protection

Abstract

The inhibitive effect of the Euphorbia Helioscopia linn. extract (EHE) on the corrosion of copper in 1 M HNO3 has been evaluated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The calculated adsorption thermodynamic parameters indicated that the adsorption was a spontaneous, exothermic process accompanied by an increase in entropy. The inhibition efficiency increases with increasing the concentration of the inhibitor in the medium and decrease with increasing the temperature. The maximum inhibition approached to 91% in the presence of 500 ppm EHE using Tafel polarization technique. The results show that EHE is an effective corrosion inhibitor for protecting the corrosion of copper in 1 M HNO3 medium even at stimulated conditions.

Keywords

Electrochemical Impedance Spectroscopy Saturated Calomel Electrode Inhibition Efficiency Potentiodynamic Polarization Corrosion Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adeloju, S.B. and Hughes, H.C., Corros. Sci., 1986, vol. 26, p. 851.CrossRefGoogle Scholar
  2. 2.
    Suter, T., Moser, E.M., and Bohni, H., Corros. Sci., 1993, vol. 34, p. 1111.CrossRefGoogle Scholar
  3. 3.
    Barouni, K., Bazzi, L., Salghi, R., et al., Mater. Lett., 2008, vol. 62, p. 3325.CrossRefGoogle Scholar
  4. 4.
    Chauhan, J.S., Asian J. Chem., 2009, vol. 21, p. 1975.Google Scholar
  5. 5.
    Sangeetha, T.V. and Fredimoses, M.E., J. Chem., 2011, vol. 8. S1–S6.Google Scholar
  6. 6.
    de Souza, F.S., Giacomelli, C., Gonçalves, R.S., and Spinelli, A., Mater. Sci. Eng., 2012, vol. 32, p. 2436.CrossRefGoogle Scholar
  7. 7.
    Abd-El-Nabey, B.A., Abdel-Gaber, A.M., El-Said Ali, M., et al., J. Electrochem. Sci., 2013, vol. 8, p. 5851.Google Scholar
  8. 8.
    Feng, W.S., Gao, L., Zheng, X.K., et al., Chin. Chem. Lett., 2010, vol. 21, p. 191.CrossRefGoogle Scholar
  9. 9.
    Zhang, W. and Guo, Y.W., Chem. Pharm. Bull., 2006, vol. 54, p. 1037.CrossRefGoogle Scholar
  10. 10.
    Parr, R.G., Donnelly, R.A., Levy, M., and Palke, W.E., J. Chem. Phys., 1978, vol. 68, p. 3801.CrossRefGoogle Scholar
  11. 11.
    Bosch, R.W., Hubrecht, J., Bogaerts, W.F., and Syrett, B.C., Corrosion, 2001, vol. 57, p. 60.CrossRefGoogle Scholar
  12. 12.
    Quartarone, G., Moretti, G., Bellomi, T., et al., Corrosion, 1998, vol. 54, p. 606.CrossRefGoogle Scholar
  13. 13.
    Bjorndahl, W.D. and Nobe, K., Corrosion, 1984, vol. 40, p. 82.CrossRefGoogle Scholar
  14. 14.
    Schumacher, R., Muller, A., and Stockel, W., J. Electroanal. Chem., 1987, vol. 219, p. 311.CrossRefGoogle Scholar
  15. 15.
    Silverman, D.C. and Carrico, J.E., in Proc. Annu. Meet. Natl. Assoc. Corros. Eng., 1988, vol. 44, p. 280.Google Scholar
  16. 16.
    Lorenz, W.J. and Mansfeld, F., Corros. Sci., 1981, vol. 21, p. 647.CrossRefGoogle Scholar
  17. 17.
    Macdonald, D.D. and Mckubre, M.C., Mod. Aspects Electrochem., 1982, vol. 14, p. 61.Google Scholar
  18. 18.
    Mansfeld, F., Corrosion, 1981, vol. 36, p. 301.CrossRefGoogle Scholar
  19. 19.
    Gabrielli, C., Identification of Electrochemical Processes by Frequency Response Analysis, Farnborough, UK: Solarton Instrumentation Group, 1980.Google Scholar
  20. 20.
    El-Achouri, M., Kertit, S., Gouttaya, H.M., et al., Prog. Org. Coat., 2001, vol. 43, p. 267.CrossRefGoogle Scholar
  21. 21.
    Macdonald, J.R. and Johanson, W.B., in Theory in Impedance Spectroscopy, Macdonald, J.R., Ed., New York: Wiley, 1987.Google Scholar
  22. 22.
    Mertens, S., Xhoffer, C., Decooman, B., and Temmerman, E., Corrosion, 1997, vol. 53, p. 381.CrossRefGoogle Scholar
  23. 23.
    Trabanelli, G., Montecelli, C., Grassi, V., and Frignani, A., Cem. Concr. Res., 2005, vol. 35, p. 1804.CrossRefGoogle Scholar
  24. 24.
    Trowsdate, A.J., Noble, B., Haris, S.J., et al., Corros. Sci., 1996, vol. 38, p. 177.CrossRefGoogle Scholar
  25. 25.
    Reis, F., de Melo, H.G., and Costa, I., Electrochem. Acta, 2006, vol. 51, p. 17.CrossRefGoogle Scholar
  26. 26.
    Lagrenee, M., Mernari, B., Bouanis, M., et al., Corros. Sci., 2002, vol. 44, p. 573.CrossRefGoogle Scholar
  27. 27.
    McCafferty, E. and Hackerman, N., J. Electrochem. Soc., 1972, vol. 119, p. 146.CrossRefGoogle Scholar
  28. 28.
    Ma, H., Chen, S., Niu, L., et al., J. Appl. Electrochem., 2002, vol. 32, p. 65.CrossRefGoogle Scholar
  29. 29.
    Kus, E. and Mansfeld, F., Corros. Sci., 2006, vol. 48, p. 965.CrossRefGoogle Scholar
  30. 30.
    Caigman, G.A., Metcalf, S.K., and Holt, E.M., J. Chem. Crystallogr., 2000, vol. 30, p. 415.CrossRefGoogle Scholar
  31. 31.
    Abdel-Rehim, S.S., Khaled, K.F., and Abd-Elshafi, N.S., Electrochim. Acta, 2006, vol. 51, p. 3269.CrossRefGoogle Scholar
  32. 32.
    Dinnappa, R.K. and Mayanna, S.M., J. Appl. Electrochem., 1981, vol. 11, p. 111.CrossRefGoogle Scholar
  33. 33.
    Patel, N., Rawat, A., Jauhari, S., et al., Eur. J. Chem., 2010, vol. 1, p. 129.CrossRefGoogle Scholar
  34. 34.
    Bhat, J.I. and Alva, V.D.P., J. Korean Chem. Soc., 2011, vol. 55, p. 835.CrossRefGoogle Scholar
  35. 35.
    Oguzie, E.E., Okolue, B.N., Ebenso, E.E., et al., Mater. Chem. Phys., 2004, vol. 87, p. 394.CrossRefGoogle Scholar
  36. 36.
    Atkins, P.W., Physical Chemistry, Oxford Univ. Press, 1999, 6th ed.Google Scholar
  37. 37.
    Umoren, S.A. and Ekanem, U.F., Chem. Eng. Commun., 2010, vol. 197, p. 133.CrossRefGoogle Scholar
  38. 38.
    Aramaki, K. and Hackerman, N., J. Electrochem. Soc., 1969, vol. 116, p. 568.CrossRefGoogle Scholar
  39. 39.
    Tang, L., Li, X., Li, L., et al., Appl. Surf. Sci., 2006, vol. 252, p. 6394.CrossRefGoogle Scholar
  40. 40.
    Zhao, T.P. and Mu, G.N., Corros. Sci., 1999, vol. 41, p. 1937.CrossRefGoogle Scholar
  41. 41.
    Döner, A. and Kardas, G., Corros. Sci., 2011, vol. 53, p. 4223.CrossRefGoogle Scholar
  42. 42.
    Ateya, B.G., El-Anadouli, B.E., and El-Nizamy, F.M., Corros. Sci., 1984, vol. 24, p. 509.CrossRefGoogle Scholar
  43. 43.
    Li, X.H., Deng, S.D., Fu, H., and Mu, G.N., Corros. Sci., 2010, vol. 52, p. 1167.CrossRefGoogle Scholar
  44. 44.
    Okafor, P.C., Ikpi, M.E., Uwah, I.E., et al., Corros. Sci., 2008, vol. 50, p. 2310.CrossRefGoogle Scholar
  45. 45.
    Ren, Y., Luo, K., Zhang, G., and Zhu, X., Corros. Sci., 2008, vol. 50, p. 3147.CrossRefGoogle Scholar
  46. 46.
    Oguzie, E.E., Corros. Sci., 2007, vol. 49, p. 1527.CrossRefGoogle Scholar
  47. 47.
    Fouda, A.S., Al-Sarawy, A.A., and El-Katori, E.E., Desalination, 2006, vol. 201, p. 1.CrossRefGoogle Scholar
  48. 48.
    Martinez, S. and Matikos-Hukovic, M., J. Appl. Electrochem., 2003, vol. 33, p. 1137.CrossRefGoogle Scholar
  49. 49.
    Assaf, F.H., Abou-Krish, M., El-Shahawy, A.S., et al., Int. J. Electrochem. Sci., 2007, vol. 2, p. 169.Google Scholar
  50. 50.
    Umoren, S.A., Obot, I.B., Ebenso, E.E., et al., Anti-Corros. Methods Mater., 2006, vol. 5, p. 277.CrossRefGoogle Scholar
  51. 51.
    Anand, R.R., Hurd, R.M., and Hackerman, N., J. Electrochem. Soc., 1965, vol. 112, p. 138.CrossRefGoogle Scholar
  52. 52.
    Cook, E.L. and Hackerman, N., J. Phys. Chem., 1951, vol. 55, p. 549.CrossRefGoogle Scholar
  53. 53.
    Bordeaux, J.J. and Hackerman, N., J. Phys. Chem., 1957, vol. 61, p. 1323.CrossRefGoogle Scholar
  54. 54.
    Singh, A.K. and Quraishi, M.A., Corros. Sci., 2010, vol. 52, p. 1529.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Dental Biomaterials Department, Faculty of Oral and Dental medicineDelta University for Science and TechnologyGamasaEgypt
  2. 2.Department of Chemistry, Faculty of ScienceEl-Mansoura UniversityEl-MansouraEgypt

Personalised recommendations