Potentials of electrochemical reactions and nature of singularities in electrode polarization dependences

  • R. N. Kuklin
Physicochemical Processes at the Interfaces


The conditions of transition of the electrochemical polarization mode to a faradaic process are studied on the metal electrode within the framework of the microscopic approach when the value of polarization potential reaches the threshold value of the potential of the electrochemical reaction. It is suggested that the elementary act of electron transfer between the metal and redox electrolyte occurs at the interface under polarization bringing the local electron level of the reagent to the Fermi level of electrons of the metal. Discharge through the Helmholtz layer limited by electrons occurs due to resonance “lightening” of the potential barrier between the metal and localized redox state of the reagent. Estimates are obtained for the values of threshold potential and exchange current of the faradaic process. A method is suggested for consideration of the elementary act of the electrochemical reaction on the basis of the Hamiltonian describing the microscopic mechanism of Fermi edge singularities. Application of the known solutions allows the appearance of threshold singularities of polarization dependences in electrochemistry to be explained.


Electrochemical Reaction Polarization Dependence Threshold Potential Diffuse Double Layer Redox Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dogonadze, R.R. and Chizmadzhev, Yu.A., Dokl. Akad. Nauk SSSR, 1962, vol. 145, p. 848.Google Scholar
  2. 2.
    Dogonadze, R.R. and Kuznetsov, A.M., Quantum Electrochemical Kinetics, in Dvoinoi sloi i elektrodnaya kinetika (Double Layer and Electrode Kinetics), Kazarinov, V.E., Ed., Moscow: Nauka, 1981.Google Scholar
  3. 3.
    Kučera, B., Ann. Phys. (Berlin, Ger.), 1903, vol. 11, pp. 529, 698.Google Scholar
  4. 4.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods. Fundamentals and Applications, New York: Wiley, 1980.Google Scholar
  5. 5.
    Heyrovský, J. and Kuta, J., Grundlagen der Polarographie, Berlin: Akademie-Verlag, 1965.Google Scholar
  6. 6.
    Frumkin, A.N., Bagotskii, V.S., Iofa, Z.A., and Kabanov, B.N., Kinetika elektrodnykh protsessov (Kinetics of Electrode Processes), Moscow: Izd-vo MGU, 1952.Google Scholar
  7. 7.
    Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physico-Chemical Hydrodynamics), Moscow: Gos. izd-vo fiziko-matematicheskoi lit-ry, 1959.Google Scholar
  8. 8.
    Funtikov, A.M., Linke, U., Stimming, U., and Vogel, R., Surf. Sci., 1995, vol. 324, p. L343.CrossRefGoogle Scholar
  9. 9.
    Kuklin, R.N., Elektrokhimiya, 2000, vol. 36, p. 49.Google Scholar
  10. 10.
    Gurney, R., Proc. R. Soc. London, Ser. A, 1931, vol. 134, p. 137.CrossRefGoogle Scholar
  11. 11.
    Fukui, K., Yonezawa, T., and Shingu, H., J. Chem. Phys., 1952, vol. 20, p. 722.CrossRefGoogle Scholar
  12. 12.
    Kohn, W., Becke, A., and Parr, R., J. Phys. Chem., 1996, vol. 100, p. 12974.CrossRefGoogle Scholar
  13. 13.
    Landau, L.D. and Lifshits, E.M., Kvantovaya mekhanika. Nerelyativistskaya teoriya (Quantum Mechanics. Nonrelativistic Theory), Moscow: Nauka, 1989.Google Scholar
  14. 14.
    Anderson, P.W., Phys. Rev. Lett., 1967, vol. 18, p. 1049.CrossRefGoogle Scholar
  15. 15.
    Abrikosov, A.A., Osnovy teorii metallov (Fundamentals of Theory of Metals), Moscow: Nauka, 1987.Google Scholar
  16. 16.
    Glazman, L.I. and Raikh, M.E., JETP Lett., 1988, vol. 47, no. 8, p. 452.Google Scholar
  17. 17.
    Mahan, G.D., Many Particle Physics. Ch. 8, New York: Plenum, 1990; Ohtaka K. and Tanabe, Y., Rev. Mod. Phys., 1990, vol. 62, p. 929.CrossRefGoogle Scholar
  18. 18.
    Mahan, G.D., Phys. Rev., 1967, vol. 163, p. 612.CrossRefGoogle Scholar
  19. 19.
    Kuklin, R.N. and Emets, V.V., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 5.CrossRefGoogle Scholar
  20. 20.
    Gomer, R., Some aspects of the chemisorption theory, in Surface Science: Recent. Progress and Perspectives, Jayadevaiah, T.S. and Vanselow, R., Eds., CRC Press, Inc., 1974.Google Scholar
  21. 21.
    Matveev, K.A. and Larkin, A.I., Phys. Rev., vol. 46, p. 15337.Google Scholar
  22. 22.
    Nozierès, P. and De Dominicis, C.N., Phys. Rev., 1969, vol. 178, p. 1097.CrossRefGoogle Scholar
  23. 23.
    Abanin, D.A. and Levitov, L.S., Phys. Rev. Lett., 2004, vol. 93, p. 126802.CrossRefGoogle Scholar
  24. 24.
    Abrikosov, A.A., Gor’kov, L.P., and Dzyaloshinskii, I.E., Metody kvantovoi teorii polya v statisticheskoi fizike (Methods of Quantum Field Theory in Statistical Physics), Moscow: Gos. izd-vo fiziko-matematicheskoi litry, 1962.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations