Chemical modification of the surface of highly dispersed metal salt crystals

  • A. V. Safronikhin
  • H. V. Ehrlich
  • G. V. Lisichkin
Molecular and Supramolecular Structures at the Interfaces


Approaches to chemical modification of surfaces of metal salt crystals, which until recently are not considered objects for surface modification, are collected and analyzed. Possibilities of postsynthetic modification and modification in situ during synthesis of metal salt nanoparticles are discussed. Data for structures of the surface complexes forming upon the interaction of modifiers (organic molecules) and ions on a particle surface and the stability and properties of such complexes are given. Areas of and prospects for practical application of different surface-modified metal salts are shown.


Ionic Crystal Carnallite Flotation Reagent Langbeinite Vinylphosphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shubov, L.Ya., Ivankov, S.I., and Shcheglova, N.K., Flotatsionnye reagenty v protsessakh obogashcheniya mineral’nogo syr’ya: Spravochnik. V 2-kh kn. (Flotation Reagents in Enrichment of Mineral Raw Materials: Handbook. In Two Books), Kondrat’eva, L.V., Ed., Moscow: Nedra, 1990, vol. 2, p. 263.Google Scholar
  2. 2.
    Berger, G.S., Flotiruemost’ mineralov (Flotability of Minerals), Moscow: Gos. nauchno-tekhnicheskoe izdvo literatury po gornomu delu, 1962, p. 264.Google Scholar
  3. 3.
    Li, C., Yang, J., Yang, P., et al., Chem. Mater., 2008, vol. 20, p. 4317.CrossRefGoogle Scholar
  4. 4.
    Evanics, F., Diamente, P.R., van Veggel, F.C.J.M., et al., Chem. Mater., 2006, vol. 18, p. 2499.CrossRefGoogle Scholar
  5. 5.
    Di, W., Willinger, M.-G., Ferreira, R.A.S., et al., J. Phys. Chem. C, 2008, vol. 112, p. 18815.CrossRefGoogle Scholar
  6. 6.
    Cross, A.M., May, P.S., van Veggel, F.C.J.M., et al., J. Phys. Chem. C, 2010, vol. 114, p. 14740.CrossRefGoogle Scholar
  7. 7.
    Dong, C., Raudsepp, M., and van Veggel, F.C.J.M., J. Phys. Chem. C, 2009, vol. 113, p. 472.CrossRefGoogle Scholar
  8. 8.
    Rocha, U., Silva, C.J., Silva, W.F., et al., ACS Nano, 2013, vol. 7, p. 1188.CrossRefGoogle Scholar
  9. 9.
    Cheung, E.N.M., Alvares, R.D.A., Oakden, W., et al., Chem. Mater., 2010, vol. 22, p. 4728.CrossRefGoogle Scholar
  10. 10.
    Nuñez, N.O., Liviano, S.R., and Ocaa, M., J. Colloid Interface Sci., 2010, vol. 349, p. 484.CrossRefGoogle Scholar
  11. 11.
    Li, J., Hao, Zh., Zhang, X., et al., J. Colloid Interface Sci., 2013, vol. 392, p. 206.CrossRefGoogle Scholar
  12. 12.
    Wang, L., Zhang, M., Wang, X., et al., Mater. Res. Bull., 2008, vol. 43, p. 2220.CrossRefGoogle Scholar
  13. 13.
    Qu, Y., Yu, Y., Kong, X., et al., Mater. Lett., 2009, vol. 63, p. 1285.CrossRefGoogle Scholar
  14. 14.
    Hu, Z. and Deng, Y., Ind. Eng. Chem. Res., 2010, vol. 49, p. 5625.CrossRefGoogle Scholar
  15. 15.
    Johnson, N.J.J., Oakden, W., Stanisz, G.J., et al., Chem. Mater., 2011, vol. 23, p. 3714.CrossRefGoogle Scholar
  16. 16.
    Pichaandi, J., Boyer, J.-Ch., Delaney, K.R., et al., J. Phys. Chem. C, 2011, vol. 115, p. 19054.CrossRefGoogle Scholar
  17. 17.
    Dong, C., Korinek, A., Blasiak, B., et al., Chem. Mater., 2012, vol. 24, p. 1297.CrossRefGoogle Scholar
  18. 18.
    Li, X., Gai, Sh., Li, Ch., et al., Inorg. Chem., 2012, vol. 51, p. 3963.CrossRefGoogle Scholar
  19. 19.
    Jiang, G., Pichaandi, J., Johnson, N.J.J., et al., Langmuir, 2012, vol. 28, p. 3239.CrossRefGoogle Scholar
  20. 20.
    Deepika, Hait, S.K., Christopher, J., et al., Powder Technol., 2013, vol. 235, p. 581.CrossRefGoogle Scholar
  21. 21.
    Ma, X., Liu, Y., Yu, Y., et al., J. Appl. Polym. Sci., 2008, vol. 108, p. 1421.CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Qin, W., Zhang, J., et al., J. Rare Earths, 2008, vol. 26, p. 40.CrossRefGoogle Scholar
  23. 23.
    Chang, Sh.-J., Liao, W.-Sh., Ciou, C.-J., et al., J. Colloid Interface Sci., 2009, vol. 329, p. 300.CrossRefGoogle Scholar
  24. 24.
    Wang, Ch., Piao, Ch., Zhai, X., et al., Powder Technol., 2010, vol. 198, p. 131.CrossRefGoogle Scholar
  25. 25.
    Zhang, H., Zeng, X., Gao, Y., et al., Ind. Eng. Chem. Res., 2011, vol. 50, p. 3089.CrossRefGoogle Scholar
  26. 26.
    Kokuoz, B., Kucera, C., DiMaio, J.R., et al., Opt. Mater., 2009, vol. 31, p. 1327.CrossRefGoogle Scholar
  27. 27.
    Bala, H., Fu, W., Guo, Y., et al., Colloids Surf., A, 2006, vol. 274, p. 71.CrossRefGoogle Scholar
  28. 28.
    Stouwdam, J.W. and van Veggel, F.C.J.M., Langmuir, 2004, vol. 20, p. 11763.CrossRefGoogle Scholar
  29. 29.
    Diamente, P.R., Burke, R.D., and van Veggel, F.C.J.M., Langmuir, 2006, vol. 22, p. 1782.CrossRefGoogle Scholar
  30. 30.
    Sheng, Y., Zhou, B., Zhao, J., et al., J. Colloid Interface Sci., 2004, vol. 272, p. 326.CrossRefGoogle Scholar
  31. 31.
    Lo, A.Y.H., Sudarsan, V., Sivakumar, S., et al., J. Am. Chem. Soc., 2007, vol. 129, p. 4687.CrossRefGoogle Scholar
  32. 32.
    Stouwdam, J.W., Raudsepp, M., and van Veggel, F.C.J.M., Langmuir, 2005, vol. 21, p. 7003.CrossRefGoogle Scholar
  33. 33.
    Aissa, A., Agougui, H., and Debbabi, M., Appl. Surf. Sci., 2011, vol. 257, p. 9002.CrossRefGoogle Scholar
  34. 34.
    Safronikhin, A., Ehrlich, H., Shcherba, T., and Lisichkin, G., Colloids Surf., A, 2011, vol. 377, p. 367.CrossRefGoogle Scholar
  35. 35.
    Safronikhin, A.V., Ehrlich, H.V., Shcherba, T.N., and Lisichkin, G.V., Russ. Chem. Bull., Int. Ed., 2011, vol. 60, no. 8, p. 1576.CrossRefGoogle Scholar
  36. 36.
    Mingalyov, P.G., Kolyagin, Yu.G., and Lisichkin, G.V., Colloid J., 2011, vol. 73, no. 1, p. 83.CrossRefGoogle Scholar
  37. 37.
    Mingalev, P.G., Kolyagin, Yu.G., and Lisichkin, G.V., Colloid J., 2012, vol. 74, no. 4, p. 495.CrossRefGoogle Scholar
  38. 38.
    Choi, H.W., Lee, H.J., Kim, K.J., et al., J. Colloid Interface Sci., 2006, vol. 304, p. 277.CrossRefGoogle Scholar
  39. 39.
    Mosby, B.M., Diaz, A., Bakhmutov, V., et al., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 585.CrossRefGoogle Scholar
  40. 40.
    Kong, D.Y., Wang, Z.L., Lin, C.K., et al., Nanotecnology, 2007, vol. 18, p. 075601.CrossRefGoogle Scholar
  41. 41.
    Morel, F., Bounor-Legare, V., Espuche, E., et al., Eur. Polym. J., 2012, vol. 48, p. 919.CrossRefGoogle Scholar
  42. 42.
    Mi, C., Gao, H., Li, F., et al., Colloids Surf., A, 2012, vol. 395, p. 152.CrossRefGoogle Scholar
  43. 43.
    Liu, Y., Ai, K., and Lu, L., Acc. Chem. Res., 2012, vol. 45, p. 1817.CrossRefGoogle Scholar
  44. 44.
    Ma, L., Chen, W.-X., Zheng, Y.-F., et al., Mater. Res. Bull., 2008, vol. 43, p. 2840.CrossRefGoogle Scholar
  45. 45.
    Dong, H., Liu, Y., Yang, P., et al., Solid State Sci., 2010, vol. 12, p. 1652.CrossRefGoogle Scholar
  46. 46.
    Wang, Ch., Liu, Y., Bala, H., et al., Colloids Surf., A, 2007, vol. 297, p. 179.CrossRefGoogle Scholar
  47. 47.
    Boyer, J.-Ch., Manseau, M.-P., Murray, J.I., et al., Langmuir, 2010, vol. 26, p. 1157.CrossRefGoogle Scholar
  48. 48.
    Das, G.K., Johnson, N.J.J., Cramen, J., et al., J. Phys. Chem. Lett., 2012, vol. 3, p. 524.CrossRefGoogle Scholar
  49. 49.
    Safronikhin, A., Shcherba, T., Ehrlich, H., and Lisichkin, G., Appl. Surf. Sci., 2009, vol. 255, p. 7990.CrossRefGoogle Scholar
  50. 50.
    Dumont, M.F., Baligand, C., Li, Y., et al., Bioconjugate Chem., 2012, vol. 23, p. 951.CrossRefGoogle Scholar
  51. 51.
    Ehrlich, H., Shcherba, T., Zhilenko, M., and Lisichkin, G., Russ. J. Gen. Chem., 2010, vol. 80, p. 939.Google Scholar
  52. 52.
    Ehrlich, H., Shcherba, T., Zhilenko, M., and Lisichkin, G., Mater. Lett., 2011, vol. 65, p. 107.CrossRefGoogle Scholar
  53. 53.
    Zhilenko, M.P., Lupandina, K.V., Ehrlich, H.V., and Lisichkin, G., Russ. Chem. Bull., Int. Ed., 2010, vol. 59, p. 1307.CrossRefGoogle Scholar
  54. 54.
    Ehrlich, H.V., Shcherba, T.N., Zhilenko, M.P., and Lisichkin, G.V., Russ. Chem. Bull., Int. Ed., 2012, vol. 61, p. 1705.CrossRefGoogle Scholar
  55. 55.
    Safronikhin, A.V., Ehrlich, H.V., and Lisichkin, G.V., Russ. J. Gen. Chem., 2011, vol. 81, p. 277.CrossRefGoogle Scholar
  56. 56.
    Tavasoli, E., Guo, Y., Kunal, P., et al., Chem. Mater., 2012, vol. 24, p. 4231.CrossRefGoogle Scholar
  57. 57.
    Yao, Ch. and Tong, Y., TrAC, Trends Anal. Chem., 2012, vol. 39, p. 60.CrossRefGoogle Scholar
  58. 58.
    Hughes, B.K., Ruddy, D.A., Blackburn, J.L., et al., ACS Nano, 2012, vol. 6, no. 6, p. 5498.CrossRefGoogle Scholar
  59. 59.
    Dai, Y., Yang, D., Ma, P., et al., Biomaterials, 2012, vol. 33, p. 8704.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Safronikhin
    • 1
  • H. V. Ehrlich
    • 1
  • G. V. Lisichkin
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations