The effect of copper ion on microstructure, plating rate and anticorrosive performance of electroless Ni-P coating on AZ61 magnesium alloy

New Substances, Materials, and Coatings

Abstract

In this paper, the effects of copper ion addition on microstructure, composition, deposition rate and anticorrosive performance of electroless Ni-P coating on AZ61 magnesium alloy have been investigated. Deposits were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) techniques. The corrosion behavior of the deposits was studied by Open Circuit Potential (OCP) measurements and Electrochemical Impedance Spectroscopy (EIS) in 3.5 wt % NaCl. Moreover, the deposition rate of the coatings was determined by polarization tests. The results indicate that introduction of Cu2+ improves the characteristics and anticorrosion performance of Ni-P coating.

Keywords

Magnesium Alloy Electrochemical Impedance Spectroscopy Open Circuit Potential Electroless Plating AZ61 Magnesium Alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu, Y., Yu, G., Hu, B., et al., Appl. Surf. Sci., 2010, vol. 256, p. 2988.CrossRefGoogle Scholar
  2. 2.
    Friedrich, H.E. and Mordike, B.L., Magnesium Technology: Metallurgy, Design Data, Applications, Germany: Springer, 2006.Google Scholar
  3. 3.
    Gray, J.E. and Luan, B., J. Alloys Compd., 2002, vol. 336, p. 88.CrossRefGoogle Scholar
  4. 4.
    Huo, H., Li, Y., and Wang, F., Corros. Sci., 2004, vol. 46, p. 1467.CrossRefGoogle Scholar
  5. 5.
    Kong, Y., Shao, J., Wang, W., et al., J. Alloys Compd., 2009, vol. 477, p. 328.CrossRefGoogle Scholar
  6. 6.
    Gu, C., Lian, J., Li, G., et al., J. Alloys Compd., 2005, vol. 391, 104.CrossRefGoogle Scholar
  7. 7.
    Ambat, R. and Zhou, W., Surf. Coat. Technol., 2004, vol. 179, 124.CrossRefGoogle Scholar
  8. 8.
    Chen, J., Yu, G., Hu, B., et al., Surf. Coat. Technol., 2006, vol. 201, p. 686.CrossRefGoogle Scholar
  9. 9.
    Li, J., Tian, Y., Huang, Z., and Zhang, X., Appl. Surf. Sci., 2006, vol. 252, p. 2839.CrossRefGoogle Scholar
  10. 10.
    Zhang, W.X., Jiang, Z.H., Li, G.Y., Jiang, Q., and Lian, J.S., Surf. Coat. Technol., 2008, vol. 202, p. 2570.CrossRefGoogle Scholar
  11. 11.
    Zhang, W.X., Huang, N., He, J.G., et al., Appl. Surf. Sci., 2007, vol. 253, p. 5116.CrossRefGoogle Scholar
  12. 12.
    Balaraju, J.N. and Rajam, K.S., Surf. Coat. Technol., 2005, vol. 195, p. 154.CrossRefGoogle Scholar
  13. 13.
    Liu, Y. and Zhao, Q., Appl. Surf. Sci., 2004, vol. 228, p. 57.CrossRefGoogle Scholar
  14. 14.
    Ranganatha, S., Venkatesha, T., and Vathsala, K., Mater. Res. Bull., 2012, vol. 47, p. 635.CrossRefGoogle Scholar
  15. 15.
    Zhong et al., Patent US. 6 410 104, 2002.Google Scholar
  16. 16.
    Tarozaite, R., Chemij., 2005, vol. 16, p. 8.Google Scholar
  17. 17.
    Taheri, R., PhD Thesis, Canada: Univ. of Saskatchewan, 2003.Google Scholar
  18. 18.
    Kim, B., Kang, B., Park, Y., and Park, I., Mat. Sci. Eng. A, 2011, vol. 528, p. 5747.CrossRefGoogle Scholar
  19. 19.
    Chen, C., Chen, B., and Hong, L., Chem. Mater., 2006, vol. 18, p. 2959.CrossRefGoogle Scholar
  20. 20.
    Seoudi, R., Elokr, M., Shabaka, A., and Sobhi, A., Physica B, 2008, vol. 403, p. 152.CrossRefGoogle Scholar
  21. 21.
    Piatti, R.C.V. and Podesta, J.J., Surf. Coat. Technol., 1990, vol. 41, p. 333.CrossRefGoogle Scholar
  22. 22.
    Seifzadeh, D. and Rajabalizadeh, Z., Surf. Coat. Technol., 2013, vol. 218, p. 119.CrossRefGoogle Scholar
  23. 23.
    Zeng, L., Yang, S., Zhang, W., et al., Electrochim. Acta, 2010, vol. 55, p. 3376.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Physical Chemistry Research Laboratory, Applied Chemistry Department, Faculty of ScienceUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations