Titania nanostructured coating for corrosion mitigation of stainless steel

  • Nastaran Barati
  • Mohammad Ali Faghihi Sani
  • Zahra Sadeghian
  • Hadi Ghasemi
Nanoscale and Nanostructured Materials and Coatings

Abstract

Anatase nanostructured coating has been prepared on 316 L stainless steel by sol-gel dip coating. The topography of the coatings surface has been analyzed using atomic force microscopy. The anticorrosion performance of the coatings has been evaluated using polarization curves. Effects of calcination temperature, withdrawal speed and times of coating on corrosion protection have been studied. The results showed calcination temperature of 400°C and withdrawal speed of 10 cm/min are desirable conditions to achieve high corrosion protection of 316 L stainless steel in chloride containing environments. Coatings with 3 times exhibit better resistance against corrosion in 0.5 molar NaCl solutions. This protection against corrosion arises from photocatalytic properties of anatase nanoparticles.

Keywords

Photocatalytic Activity Calcination Temperature Corrosion Protection Coated Sample Stainless Steel Substrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, D. and Bierwagen, G.P., Prog. Org. Coat., 2009, vol. 64, p. 327.CrossRefGoogle Scholar
  2. 2.
    Nguyen, T.N., Hubbard, J.B., and McFadden, G.B., Coatings Technol., 1991, vol. 63, p. 43.Google Scholar
  3. 3.
    Chou, T.P., Mater. Sci. Lett., 2002, vol. 21, p. 251.CrossRefGoogle Scholar
  4. 4.
    Corrosion, Shreir, L.L., Jarman, R.A., and Burstein, G.T., Eds., Oxford: Butterworth-Heinemann, 1994, 3rd ed.Google Scholar
  5. 5.
    Branko N. Popov and Swaminatha P. Kumaraguru, Handbook of Environmental Degradation of Materials, Elsevier, 2012, 2nd ed., p. 771.CrossRefGoogle Scholar
  6. 6.
    Lakhotkin, Yu.V., Kuzmin, V.P., and Goncharov, V.L., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, p. 833.CrossRefGoogle Scholar
  7. 7.
    Golovin, V.A., Protection of Metals and Physical Chemistry of Surfaces, 2011, vol. 47, p. 830.CrossRefGoogle Scholar
  8. 8.
    Pravin P. Deshpande, Shashikant T. Vagge, Sunil P. Jagtap, et al., Protection of Metals and Physical Chemistry of Surfaces, 2012, vol. 48, p. 356.CrossRefGoogle Scholar
  9. 9.
    Nazarov, A.P. and Thierry, D., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, p. 735.CrossRefGoogle Scholar
  10. 10.
    Aysel Büyükagis, Nihal Çiiftçi, Yavuz Ergün, and Yusuf Kayali, Protection of Metals and Physical Chemistry of Surfaces, 2011, vol. 47, p. 670.CrossRefGoogle Scholar
  11. 11.
    Marina, E., Guzmana, L., Lanzuttia, A., et al., J. Thin Solid Films, 2012, vol. 522, p. 283.CrossRefGoogle Scholar
  12. 12.
    Shanaghi, A., Sabour, A.R., and Shahrabi, T., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, p. 305.CrossRefGoogle Scholar
  13. 13.
    Tsung-Kuang Yeha, Yu-Jen Huanga, Mei-Ya Wangc, and Chuen-Horng Tsai, J. Nucl. Eng. Des., 2013, vol. 254, p. 228.CrossRefGoogle Scholar
  14. 14.
    Guglielmi, M., J. Sol-Gel Sci. Technol., 1997, vol. 8, p, 443.Google Scholar
  15. 15.
    Wang, D. and Bierwagen, G.P., J. Prog. Org. Coat., 2009, vol. 64, p. 327.CrossRefGoogle Scholar
  16. 16.
    Guohong Wang, J. Molecular Catalysis A, 2007, vol. 274, p. 185.CrossRefGoogle Scholar
  17. 17.
    Liu, G., Chen, Z.G., Dong, C.L., et al., J. Phys. Chem. B, 2006, vol. 110, p. 20823.CrossRefGoogle Scholar
  18. 18.
    Kolen’ko, Y.V., Churagulov, B.R., Kunst, M., et al., J. Appl. Catal. B: Environ., 2004, vol. 54, p. 51.CrossRefGoogle Scholar
  19. 19.
    Liu, G., Chen, Z.G., Dong, C.L., et al., J. Phys. Chem. B, 2006, vol. 110, p. 20823.CrossRefGoogle Scholar
  20. 20.
    Yu, J.C., Yu, J., and Zhao, J., J. Appl. Catal. B, 2002, vol. 36, p. 31.CrossRefGoogle Scholar
  21. 21.
    Subramanian, V., Wolf, E.E., and Kamat, P.V., J. Am. Chem. Soc., 2004, vol. 126, p. 4943.CrossRefGoogle Scholar
  22. 22.
    Yu, J.C., Yu, J., Ho, W., et al., J. Chem. Mater., 2002, vol. 14, p. 3808.CrossRefGoogle Scholar
  23. 23.
    Qiu, J.X., Li, Z.H., and Zhang, H., J. Surf. Eng., 2008, vol. 24, p. 240.CrossRefGoogle Scholar
  24. 24.
    Sibu, C.P., Rajesh Kumar, S., Mukundan, P., and Warrier, K.G.K., J. Chem. Mater., 2002, vol. 14, p. 2876.CrossRefGoogle Scholar
  25. 25.
    Yu, J., Wang, G., Cheng, B., and Zhou, M., J. Appl. Catal. B, 2007, vol. 69, p. 171.CrossRefGoogle Scholar
  26. 26.
    Barati, N., Faghihi Sani, M.A., and Ghasemi, H., Protection of Metals and Physical Chemistry of Surfaces, 2013, vol. 49, p. 109.CrossRefGoogle Scholar
  27. 27.
    Huang, J., Shinohara, T., and Tsujikawa, S., J. Corros. Eng., 1997, vol. 46, p. 789.Google Scholar
  28. 28.
    Park, H., Kim, K.Y., and Choi, W., J. Phys. Chem., 2002, vol. 106, p. 4775.CrossRefGoogle Scholar
  29. 29.
    Subasri, R. and Shinohara, T., J. Electrochem. Comm., 2003, vol. 5, p. 897.CrossRefGoogle Scholar
  30. 30.
    Barati, N., Faghihi Sani, M.A., Ghasemi, H., et al., Appl. Surf. Sci., 2009, vol. 255, p. 8328.CrossRefGoogle Scholar
  31. 31.
    Sumita, T., Yamaki, T., Yamamoto, S., and Miyashita, A., Appl. Surf. Sci., 2002, vol. 200, p. 21.CrossRefGoogle Scholar
  32. 32.
    Huruma, D.C., Agrios, A.G., Crist, S.E., et al., J. Electron. Spectrosc. Relat. Phenom., 2006, vol. 150, p. 155.CrossRefGoogle Scholar
  33. 33.
    Kuznetsova, I.N., Blaskov, V., and Znaidi, L., J. Mater. Sci. Eng. B, 2007, vol. 137, p. 31.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Nastaran Barati
    • 1
  • Mohammad Ali Faghihi Sani
    • 1
  • Zahra Sadeghian
    • 2
  • Hadi Ghasemi
    • 3
  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  2. 2.Department of GasResearch Institute of Petroleum Industry (RIPI)TehranIran
  3. 3.Department of Mechanical EngineeringMassachusetts Institute of Technology Massachusetts AvenueCambridgeUK

Personalised recommendations