Catalytically active cobalt-copper-oxide layers on aluminum and titanium

  • I. V. Lukiyanchuk
  • I. V. Chernykh
  • V. S. Rudnev
  • A. Yu. Ustinov
  • L. M. Tyrina
  • P. M. Nedozorov
  • E. E. Dmitrieva
New Substances, Materials, and Coatings

Abstract

Oxide coatings modified with cobalt and copper oxides are obtained on titanium and aluminum by means of combining plasma electrolytic oxidation (PEO) in silicate and zirconate electrolytes and impregnation in nitrate solutions followed by annealing. The effect of PEO coatings that were preliminarily formed on aluminum and titanium in different electrolytes on the composition and surface morphology of cobaltcopper oxide composites and their activity with respect to CO oxidation is studied. The maximum total concentration of cobalt and copper is found to be typical of composite layers based on SiO2 + Al2O3/Al, while the minimum content is observed in the case of layers based on ZrO2 + TiO2/Ti, the PEO bases being characterized by the highest and lowest water-absorbing capacity, respectively. The effect of PEO coatings on the catalytic activity of cobalt-copper oxide catalysts decreases in the series SiO2 + TiO2/Ti > SiO2 + Al2O3/Al > Ce2O3 + ZrO2 + TiO2/Ti > ZrO2 + TiO2/Ti.

Keywords

Cobalt Copper Oxide Plasma Electrolytic Oxidation Silicate Coating Plasma Electrolytic Oxidation Coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vodyankin, A.Y., Kurina, L.N., and Shilyaeva, L.P., Russ. J. Appl. Chem., 1999, vol. 72, no. 6, p. 1079.Google Scholar
  2. 2.
    El-Shobaky, H.G., Appl. Catal., A, 2004, vol. 278, no. 1, p. 1.CrossRefGoogle Scholar
  3. 3.
    Zav’yalova, U.F., Tret’yakov, V.F., Burdeinaya, T.N., et al., Kinet. Catal., 2005, vol. 46, no. 5, p. 752.CrossRefGoogle Scholar
  4. 4.
    Popova, N.M., Katalizatory ochistki gazovykh vybrosov promyshlennykh proizvodstv (Catalysts for Purifying Exhaust Gas Emissions of Industrial Plants), Moscow: Khimiya, 1991.Google Scholar
  5. 5.
    Avila, P., Montes, M., and Miro, E.E., Chem. Eng. J., 2005, vol. 109, nos. 1-3, p. 11.CrossRefGoogle Scholar
  6. 6.
    Yerokhin, A.L., Nie, X., Leyland, A., et al., Surf. Coat. Technol., 1999, vol. 122, p. 73.CrossRefGoogle Scholar
  7. 7.
    Walsh, F.C., Low, C.T.J., Wood, R.J.K., et al., Trans. Inst. Metal Finish., 2009, vol. 87, no. 3, p. 122.CrossRefGoogle Scholar
  8. 8.
    Suminov, I.V., Belkin, P.N., Epel’fel’d, A.V., et al., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma-Electrolytic Surface Modification of Metals and Alloys), Moscow: Tekhnosfera, 2011, vol. 1.Google Scholar
  9. 9.
    Rudnev, V.S., Prot. Met., 2008, vol. 44, no. 3, p. 263.CrossRefGoogle Scholar
  10. 10.
    Tikhov, S.F., Chernykh, G.V., Sadykov, V.A., et al., Catal. Today, 1999, vol. 53, no. 4, p. 639.CrossRefGoogle Scholar
  11. 11.
    Jiang, X., Zhang, L., Wybornov, S., et al., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 8, p. 4062.CrossRefGoogle Scholar
  12. 12.
    Patcas, F. and Krysmann, W., Appl. Catal., A, 2007, vol. 316, no. 2, p. 240.CrossRefGoogle Scholar
  13. 13.
    Ved’, M.V. and Sakhnenko, N.D., Korroz.: Mater., Zashch., 2007, no. 10, p. 36.Google Scholar
  14. 14.
    Rudnev V.S., Vasilyeva M.S., Lukiyanchuk I.V., Chernykh I.V., Russ. J. Appl. Chem., 2012, vol. 85, no. 6, p. 953.CrossRefGoogle Scholar
  15. 15.
    Vasilyeva M.S., Rudnev V.S., Ustinov A.Y., et al., Appl. Surf. Sci., 2010, vol. 257, no. 4, p. 1239.CrossRefGoogle Scholar
  16. 16.
    Vasil’eva M.S., Rudnev V.S., Sklyarenko O.E., et al., Russ. J. Gen. Chem., 2010, vol. 80, no. 8, p. 1557.CrossRefGoogle Scholar
  17. 17.
    Rudnev, V.S., Tyrina, L.M., Lukiyanchuk, I.V., et al., Surf. Coat. Technol., 2011, vol. 206, nos. 2-3, p. 417.CrossRefGoogle Scholar
  18. 18.
    Grikhiles, S.Ya., Obezzhirivanie, travlenie i polirovanie metallov (Degreasing, Etching, and Polishing of Metals), Leningrad: Mashinostroenie, 1977.Google Scholar
  19. 19.
    Yampol’skii, A.M., Travlenie metallov (Etching of Metals), Moscow: Metallurgiya, 1980.Google Scholar
  20. 20.
    Rudnev, V. S., Kilin, K.N., Malyshev, I.V., et al., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 6, p. 704.CrossRefGoogle Scholar
  21. 21.
    Dul’nev, A.V., Efremov, V.N., Obysov, M.A., et al., Russ. J. Appl. Chem., 2004, vol. 77, no. 9, p. 1491.CrossRefGoogle Scholar
  22. 22.
    Yu, Y., Takei, T., Ohashi, H., et al., J. Catal., 2009, vol. 267, p. 121.CrossRefGoogle Scholar
  23. 23.
    Kolotilov, S.V., Gavrilenko, K.S., Kantserova, M.R., et al., Theor. Exp. Chem., 2005, vol. 41, no. 6, p. 347.CrossRefGoogle Scholar
  24. 24.
    Oleksenko, L.P., Theor. Exp. Chem., 2004, vol. 40, no. 5, p. 331.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. V. Lukiyanchuk
    • 1
  • I. V. Chernykh
    • 1
  • V. S. Rudnev
    • 1
    • 2
  • A. Yu. Ustinov
    • 1
    • 2
  • L. M. Tyrina
    • 1
  • P. M. Nedozorov
    • 1
  • E. E. Dmitrieva
    • 1
  1. 1.Institute of Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations