Kinetics of the nucleation and growth of nickel particles in α-alanine-containing electrolytes

  • N. V. Sotskaya
  • L. V. Sapronova
  • O. V. Dolgikh
Physicochemical Processes at the Interfaces

Abstract

Kinetics of the nucleation and growth of nickel particles in an α-alanine-containing solution is studied with the use of voltammetry and chronoammetry. The electrochemical crystallization of nickel on a copper electrode is found to proceed according to the instantaneous nucleation mechanism. The main kinetic characteristics of the nucleation process are calculated. Partial curves of the metal deposition and hydrogen evolution are constructed.

Keywords

Hydrogen Evolution Hydrogen Evolution Reaction Copper Electrode Current Transient Nickel Particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Toradi, M. and Dolati, A., J. Appl. Electrochem., 2010, vol. 40, p. 1941.CrossRefGoogle Scholar
  2. 2.
    Grujicic, D. and Pesic, B., Electrochim. Acta, 2006, vol. 51, no. 13, p. 2678.CrossRefGoogle Scholar
  3. 3.
    Dolgikh, O.V., Sotskaya, N.V., Vu Thi Duyen, et al., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 6, p. 718.CrossRefGoogle Scholar
  4. 4.
    Janjan, S.M., Nasirpouri, F., Hosseini, M.G., Russ. J. Electrochem., 2011, vol. 47, no. 7, p. 787.CrossRefGoogle Scholar
  5. 5.
    Scharifker, B.R. and Hills, G., Electrochim. Acta, 1983, vol. 28, p. 879.CrossRefGoogle Scholar
  6. 6.
    Sahari, A., Aziz, A., Schmerber, G., et al., Surf. Rev. Lett., 2008, vol. 15, no. 6, p. 717.CrossRefGoogle Scholar
  7. 7.
    Sapronova, L.V., Sotskaya, N.V., Dolgikh, O.V., et al., Vestnik Voronezh. Gos. Univ., Ser. Khimiya, Biologiya, Farmatsiya, 2012, no. 2, p. 87.Google Scholar
  8. 8.
    Palomar-Pardavé, M., Scharifker, B.R., Arce, E.M., et al., Electrochim. Acta, 2005, vol. 50, p. 4736.CrossRefGoogle Scholar
  9. 9.
    Kudryavtsev, N.T., Tsupak, T.E., and Pshilusski, Ya.B., Zashch. Met., 1967, vol. 3, no. 4, p. 447.Google Scholar
  10. 10.
    Ivanov, S.V. and Gerasimova, O.O., Prot. Met., 1997, vol. 33, no. 5, p. 461.Google Scholar
  11. 11.
    Novyi spravochnik khimika i tekhnologa. Khimicheskoe ravnovesie. Svoistva rastvorov (New Handbook of Chemist and Technologist. Chemical Equilibrium. Properties of Solutions), St. Petersburg: ANO NPO “Professional”, 2004.Google Scholar
  12. 12.
    Butler J. N., Ionic Equilibrium: A Mathematical Approach, Massachusetts: Addison Wesley, 1964, p. 547.Google Scholar
  13. 13.
    Greef, R., Peat, R., Peter, L.M., et al., Instrumental Methods in Electrochemistry, Chichester: Ellis Horwood, 1985, p. 283.Google Scholar
  14. 14.
    Schindler, W., Hugelmann, P., Hugelmann, M., et al., J. Electroanal. Chem., 2002, vol. 522, p. 49.CrossRefGoogle Scholar
  15. 15.
    Danilov, A.I. and Polukarov, Yu.M., Usp. Khim., 1987, vol. 56, no. 7, p. 1082.CrossRefGoogle Scholar
  16. 16.
    Arbib, M., Zang, B., Lazarov, V., et al., J. Electroanal. Chem., 2001, vol. 510, p. 67.CrossRefGoogle Scholar
  17. 17.
    Mostany, J., Scharifker, B.R., Saavedra, K., et al., Russ. J. Electrochem., 2008, vol. 44, no. 6, p. 652.CrossRefGoogle Scholar
  18. 18.
    Milchev, A., Electrocrystallization. Fundamentals of Nucleation and Growth, New York: Kluwer, 2002, p. 265.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. V. Sotskaya
    • 1
  • L. V. Sapronova
    • 1
  • O. V. Dolgikh
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations