The inhibition effects of methionine on corrosion behavior of copper in 3.5% NaCl solution at pH = 8.5

Physicochemical Problems of Materials Protection


The inhibition effect of methionine on the corrosion behaviour of copper was investigated in 3.5% NaCl solution with and without methionine. For this purpose, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) techniques were used. The surface morphology of the metal surface after exposed to corrosive medium was investigated by scanning electron microscopy (SEM). The effect of temperature has also studied in the temperature range from 298 K to 328 K. The effect of temperature has also studied in the temperature range from 298 K to 328 K. Some thermodynamic parameters were calculated and discussed. It was found that, methionine could inhibit the corrosion of copper in 3.5% NaCl solution. Methionine as a organic corrosion inhibitor for copper, and physically adsorbed molecules forming a protective film. Inhibition efficiency increases with decreasing methionine concentration and behaves as a mixed-type inhibitor.


Methionine Corrosion Rate Polarization Curve Corrosion Product Electrochemical Impedance Spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Erbil, M. and Lorenz, W.J., Werkst und Korros, 1978, vol. 29, p. 505.CrossRefGoogle Scholar
  2. 2.
    Kilinççeker, G., Colloids and Surface A, 2008, vol. 329, p. 112.CrossRefGoogle Scholar
  3. 3.
    Sinapia, F., Deroubaixa, S., Pirlota, C., et al., Electrochim. Acta, 2004, vol. 49, p. 2987.CrossRefGoogle Scholar
  4. 4.
    Kabasakaloğlu, M., Corrosion, 1991, vol. 3, p. 23.Google Scholar
  5. 5.
    Kabasakaloğlu, M., Corrosion, 1991, vol. 3, p. 43.Google Scholar
  6. 6.
    Kabasakaloğlu, M., Corrosion, 1991, vol. 3, p. 93.Google Scholar
  7. 7.
    Crundwell, F.K., Electrochim. Acta, 1993, vol. 37, p. 2707.CrossRefGoogle Scholar
  8. 8.
    Kilinççeker, G. and Galip, H., Mater. Chem. Phys., 2008, vol. 110, p. 380.CrossRefGoogle Scholar
  9. 9.
    Sutter, E.M.M., Fiaud, C., and Lincot, D., Electrochim. Acta, 1993, vol. 38, p. 1471.CrossRefGoogle Scholar
  10. 10.
    Sherif, E.M. and Park, S.M., Electrochim. Acta, 2006, vol. 51, p. 6556.CrossRefGoogle Scholar
  11. 11.
    Damaskin, B.B., Petrii, O.A., and Batrakov, V.V., Adsorption of Organic Compounds on Electrodes, N.Y.: Plenum Press, 1971.CrossRefGoogle Scholar
  12. 12.
    Rozenfeld, I.L. and Hardin, R., Corrosion Inhibitors, N.Y.: Mc Graw-Hill, 1981.Google Scholar
  13. 13.
    Bockris, J.O.M. and Reddy, A.K.N., Modern Electrochemistry, vol. 2, N.Y.: Plenum Press, 1977.Google Scholar
  14. 14.
    Ayta, A., Özmen, Ü., and Kabasakaloğlu, M., Mater. Chem. Phys., 2005, vol. 89, p. 176.CrossRefGoogle Scholar
  15. 15.
    Aksüt, A.A. and Bilgi, S., Corrosion Sci., 1992, vol. 33, p. 379.CrossRefGoogle Scholar
  16. 16.
    Soneyik, V.L. and Jenkins, D., Water Chemistry, N.Y.: John Wiley & Sons, 1980.Google Scholar
  17. 17.
    Jinturkar, P., Guan, Y.C., and Han, K.N., Corrosion, 1998, vol. 54, p. 106.CrossRefGoogle Scholar
  18. 18.
    Dennis, J., Filliaudeau, F., and Gerard, S.P., Electrochim. Acta, 1993, vol. 38, p. 1951.CrossRefGoogle Scholar
  19. 19.
    Cordeiro, G.G.O., Barcia, O.E., and Mattos, O.R., Electrochim. Acta, 1993, vol. 38, p. 319.CrossRefGoogle Scholar
  20. 20.
    Modestova, A.D., Zhoua, G.D., Gea, H.H, and Loob, B.H., J. Electroanalyt. Chem., 1995, vol. 380, p. 63.CrossRefGoogle Scholar
  21. 21.
    Kabasakaloğlu, M., Kiyak, T., Sendil, O., and Asan, A., Appl. Surf. Sci., 2002, vol. 193, p. 167.CrossRefGoogle Scholar
  22. 22.
    Singh, R.N., Bahadur, L., and Singh, P., Electrochim. Acta, 1987, vol. 32, p. 895.CrossRefGoogle Scholar
  23. 23.
    Kilinççeker, G., Yazici, B., Yilmaz, A.B., and Erbil, M., Brit. Corrosion, 2002, vol. 37, p. 23.CrossRefGoogle Scholar
  24. 24.
    Kilinççeker, G., Yazici, B., Erbil, M., and Galip, H., Turk. J. Chem., 1999, vol. 23, p. 41.Google Scholar
  25. 25.
    Kilinççeker, G. and Galip, H., Protect. Met. Phys. Chem. Surf., 2009, vol. 45, p. 232.CrossRefGoogle Scholar
  26. 26.
    Herrag, L., Chetouani, A., Elkadiri, S., et al., Electrochim. Acta, 2008, vol. 26, p. 211.Google Scholar
  27. 27.
    Kilinççeker, G., Taze, N., Galip, H., and Yazici, B., Anti-Corros. Meth. Mater., 2011, vol. 58, p. 4.Google Scholar
  28. 28.
    Erbil, M., Chim. Acta Turc., 1984, vol. 12, p. 97.Google Scholar
  29. 29.
    Fonseca, I.T.E. and Marin, A.C.S., Electrochim. Acta, 1992, vol. 37, p. 2541.CrossRefGoogle Scholar
  30. 30.
    Kilinççeker, G. and Erbil, M., Mater. Chem. Phys., vol. 119, p. 30.Google Scholar
  31. 31.
    Stern, M. and Geary, A.L., J. Electrochem. Soc., 1957, vol. 104, p. 56.CrossRefGoogle Scholar
  32. 32.
    De Chialvo, M.R.G., Moll, D.V., Salvarezza, R.C., and Arvia, A.J., Electrochim. Acta, 1985, vol. 30, p. 1501.CrossRefGoogle Scholar
  33. 33.
    Moreira, A.H., Benedetti, A.V., Cabot, P.L., and Sumodjo, P.T.A., Electrochim. Acta, 1993, vol. 38, p. 981.CrossRefGoogle Scholar
  34. 34.
    Sanchez, M.P., Barrera, M., Gonzalez, S., et al., Electrochim. Acta, 1990, vol. 35, p. 1337.CrossRefGoogle Scholar
  35. 35.
    Souto, R.M., Sanchez, M.P., Barrera, M., et al., Electrochim. Acta, 1992, vol. 37, p. 1437.CrossRefGoogle Scholar
  36. 36.
    Dogan, T. and Kilineker, G., Corrosion, 2006, vol. 14, p. 14.Google Scholar
  37. 37.
    Nunez, L., Reguera, E., Corvo, F., et al., Corrosion Sci., 2005, vol. 47, p. 461.CrossRefGoogle Scholar
  38. 38.
    Lalitha, A., Ramesh, S., Rajeswari, S., Electrochim. Acta, 2005, vol. 51, p. 47.CrossRefGoogle Scholar
  39. 39.
    Lipkowski, J. and Ross, P.N., Adsorption of Molecules at Metal Electrodes, N.Y.: VCH, 1992.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Science and Letters Faculty, Chemistry DepartmentÇukurova UniversityBalcali, AdanaTurkey

Personalised recommendations