Advertisement

Effect of nonmonotonic changing of surface coverage in multisite adsorption models with possibility of different orientations of molecules with respect to solid surface

  • V. A. Gorbunov
  • A. V. Myshlyavtsev
  • M. D. Myshlyavtseva
  • V. F. Fefelov
Physicochemical Processes at The Interfaces

Abstract

The reasons for nonmonotonous changing of surface coverage as function of chemical potential in the multisite adsorption models (with allowance for the possibility that molecules can be oriented in a different manner with respect to the solid surface) are revealed in this work. It is demonstrated that this behavior of the surface coverage as function of chemical potential is determined by either the sequence of ordered structures being formed or by the emergence of a stable interface between the ordered phases at temperatures above the tricritical point.

Keywords

Surface Coverage Adsorption Layer Triangular Lattice Vacant Site Adsorption Monolayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rudzinski W. and Everett D.H., Adsorption of Gases on Heterogeneous Surfaces, New York: Academic Press, 1992.Google Scholar
  2. 2.
    Morrison, J. and Lander, J.J., Surf. Sci., 1966, vol. 5, p. 163.CrossRefGoogle Scholar
  3. 3.
    Vilches, O.E., Ann. Rev. Phys. Chem., 1980, vol. 31, p. 463.CrossRefGoogle Scholar
  4. 4.
    Bakaev, V.A., Surf. Sci., 1988, vol. 198, p. 571.CrossRefGoogle Scholar
  5. 5.
    Riccardo, J.L., Ramirez-Pastor, A.J., and Roma, F., Langmuir, 2002, vol. 18, p. 2130.CrossRefGoogle Scholar
  6. 6.
    Cavenati, S., Grande, C.A., and Rodrigues, A.E., J. Chem. Eng. Data, 2004, vol. 49, p. 1095.CrossRefGoogle Scholar
  7. 7.
    Otero, R., Rosei, F., and Besenbacher, F., Ann. Rev. Phys. Chem., 2006, vol. 57, p. 497.CrossRefGoogle Scholar
  8. 8.
    Barth, J.V., Ann. Rev. Phys. Chem., 2007, vol. 58, p. 375.CrossRefGoogle Scholar
  9. 9.
    Liang, H., He, Y., Ye, Y., et al., Coord. Chem. Rev., 2009, vol. 253, p. 2959.CrossRefGoogle Scholar
  10. 10.
    Zhdanov, V.P., Elementarnye fiziko-khimicheskie protsessy na poverkhnosti (Elementary Physicochemical Processes on Solid Surfaces), Novosibirsk: Nauka, 1988.Google Scholar
  11. 11.
    Tovbin, Yu.K., Teoriya fiziko-khimicheskikh protsessov na granitse gaz-tverdoe telo (Theory of Physicochemical Processes at the Gas-Solid Interface), Moscow: Nauka, 1990.Google Scholar
  12. 12.
    Borowko, M., Computational Methods in Surface and Colloid Science, New York: Marcel Dekker, 2000.CrossRefGoogle Scholar
  13. 13.
    Ramirez-Pastor, A.J., Aligia, A., Roma, F., and Riccardo, J.L., Langmuir, 2000, vol. 16, p. 5100.CrossRefGoogle Scholar
  14. 14.
    Kasteleyn, P.W., Physica, 1961, vol. 27, p. 1209.CrossRefGoogle Scholar
  15. 15.
    Engel, W., Courbin, L., and Panizza, P., Phys. Rev., vol. 70, p. 165407.Google Scholar
  16. 16.
    Rzysko, W. and Borowko, M., J. Chem. Phys., 2002, vol. 117, p. 4526.CrossRefGoogle Scholar
  17. 17.
    Ramirez-Pastor, A.J., Riccardo, J.L., and Pereyra, V.D., Surf. Sci., 1998, vol. 411, p. 294.CrossRefGoogle Scholar
  18. 18.
    Roma, F., Ramirez-Pastor, A.J., and Riccardo, J.L., Phys. Rev., vol. 68, p. 205407.Google Scholar
  19. 19.
    Roma, F., Ramirez-Pastor, A.J., and Riccardo, J.L., Langmuir, 2003, vol. 19, p. 6770.CrossRefGoogle Scholar
  20. 20.
    Rzysko, W. and Borowko, M., Phys. Rev., vol. 67, p. 045403.Google Scholar
  21. 21.
    Nitta, T., Kiriyama, H., and Shigeta, T., Langmuir, 1997, vol. 13, p. 903.CrossRefGoogle Scholar
  22. 22.
    Rzysko, W., Patrykiejew, A., and Binder, K., Phys. Rev. B, vol. 72, p. 165416.Google Scholar
  23. 23.
    Roma, F., Riccardo, J.L., and Ramirez-Pastor, A.J., Ind. Eng. Chem. Res., 2006, vol. 45, p. 2046.CrossRefGoogle Scholar
  24. 24.
    Temkin, M.I., Zh. Fiz. Khim., 1938, vol. 2, p. 169.Google Scholar
  25. 25.
    Snagovskii, Yu.S., Zh. Fiz. Khim., 1972, vol. 9, p. 2367.Google Scholar
  26. 26.
    Snagovskii, Yu.S., Zh. Fiz. Khim., 1972, vol. 10, p. 2584.Google Scholar
  27. 27.
    Snagovskii, Yu.S., Zh. Fiz. Khim., 1972, vol. 10, p. 2589.Google Scholar
  28. 28.
    Gorshtein, A.B. and Lopatkin, A.A., Zh. Fiz. Khim., 1974, vol. 48, no. 1, p. 177.Google Scholar
  29. 29.
    Gorshtein, A.B. and Lopatkin, A.A., Teor. Eksp. Khim., 1973, vol. 9, no. 2, p. 196.Google Scholar
  30. 30.
    Fefelov, V.F., Gorbunov, V.A., Myshlyavtsev, A.V., and Myshlyavtseva, M.D., Chem. Eng. J., 2009, vol. 154, p. 107.CrossRefGoogle Scholar
  31. 31.
    Fefelov, V.F., Gorbunov, V.A., Myshlyavtsev, A.V., and Myshlyavtseva, M.D., Phys. Rev. E, 2010, vol. 82, no. 4, p. 041602.CrossRefGoogle Scholar
  32. 32.
    Fefelov, V.F., Gorbunov, V.A., Myshlyavtsev, A.V., et al., Appl. Surf. Sci., 2010, vol. 256, p. 5298.CrossRefGoogle Scholar
  33. 33.
    Gorbunov, V.A., Myshlyavtsev, A.V., Myshlyavtseva, M.D., and Fefelov, V.F., Izv. Vuzov: Khim. Khim. Tekhnol., 2010, vol. 53, no. 9, p. 66.Google Scholar
  34. 34.
    Gorbunov, V.A., Myshlyavtsev, A.V., Myshlyavtseva, M.D., and Fefelov, V.F., Russ. J. Phys. Chem., 2011, no. 1, p. 94.Google Scholar
  35. 35.
    Landau, D.P. and Binder, K., A Guide to Monte Carlo Simulation in Statistical Physics, Cambridge: University Press, 2000.Google Scholar
  36. 36.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., and Teller, A.H., J. Chem. Phys., 1953, vol. 21, p. 1087.CrossRefGoogle Scholar
  37. 37.
    Myshlyavtsev, A.V. and Zhdanov, V.P., Chem. Phys. Lett., 1989, vol. 162, p. 43.CrossRefGoogle Scholar
  38. 38.
    Myshlyavtsev, A.V. and Myshlyavtseva, M.D., Vychislitel’nye aspekty metoda transfer-matritsy (Computation Aspects of the Transfer-Matrix Approach), Kyzyl: TuvIKOPR SO RAN, 2000.Google Scholar
  39. 39.
    Bykov, V.I., Myshlyavtsev, A.V., and Slin’ko, M.G., Dokl. Akad. Nauk, 2002, vol. 384, no. 5, p. 650.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. A. Gorbunov
    • 1
  • A. V. Myshlyavtsev
    • 1
    • 2
  • M. D. Myshlyavtseva
    • 1
  • V. F. Fefelov
    • 1
  1. 1.Omsk State Technical UniversityOmskRussia
  2. 2.Institute of Hydrocarbon Processing, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations